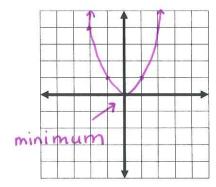
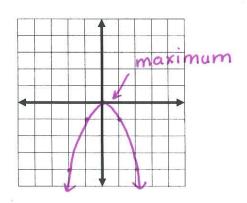

Learning Target: Today you will be able to GRAPH QUADRATIC FUNCTIONS OF THE FORM $Y = AX^2$ AND $Y = AX^2 + C$

Question/Main Ideas:

Notes:

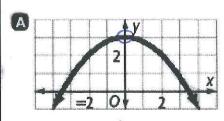

Definition: Standard Form of a Quadratic

- ·Graph is a <u>Parabola</u> u-shape; symmetric · Vertex: high - point or
 - · Vertex: high point or low - point depending on the

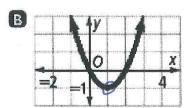


Characteristics of the Graphs

y=ax 2+bx+c a>0; opens up



y=ax2+bx+c a40; opens down

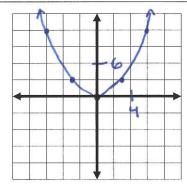

Example 1: Indentifying a Vertex

What are the coordinates of the vertex of each graph? Is it a minimum or a maximum?

V: (0,3)

Maximum

V: (1, -1)

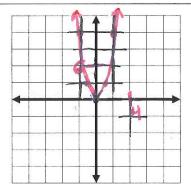

Minimum

Example 2: Graphing $y = ax^2$

Use the given tables to graph the following.

a.
$$f(x) = \frac{1}{3}x^2$$

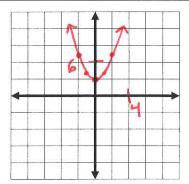
×	-6	-3	0	3	6
У	12	3	0	3	12



Now It's Your turn

Use the given tables to graph the following.

b.
$$f(x) = 3x^2$$


×	-2	-1	0	1	2
У	12	3	0	3	12

Use the given tables to graph the following.

c.
$$f(x) = x^2 + 3$$

			_		
×	-2	-1	0	1	2
у	7	4	3	4	7

Observations of the Graphs

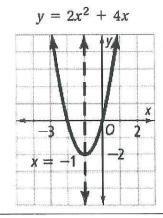
Use the above graphs to answer the following questions.

- 1. How does changing the "a" value (the number in front of the x^2) change the graph?
 - · As a gets bigger, the graph gets skinnier
 - · As "a" gets smaller, the graph gets fatter
- 2. How does adding a 3 at the end of the equation on example c change the graph?
 - · It moves the graph up 3 units

Summary: _____

Learning Target: Today you will be able to GRAPH QUADRATIC FUNCTIONS WITH FORM Y = AX2 + BX + C

Question/Main Ideas: Notes:


Concept: Changing the Value of b

In the quadratic function $y = ax^2 + bx + c$, the value of b affects the position of the axis of symmetry. Consider the graphs of the following functions.

$$y = 2x^2 + 2x$$

$$-4 -2 + 0 = 2$$

$$x = -\frac{1}{2} + -2$$

$$y = 2x^{2} + 6x$$

1. 2. x

-4. -2. 0 2

 $x = -\frac{3}{2}$ 1. . . .

Concept: Finding the Axis of Symmetry

 $y=ax^2+bx+c$ $y=ax^2+ax$ Vertical Line: $x=-\frac{b}{aa}$ $x=-\frac{a}{a(a)}=-\frac{a}{4}=-\frac{1}{a}$

$$y = 2x^{2} + 2x$$

 $x = -\frac{2}{2(2)} = -\frac{2}{4} = -\frac{1}{2}$

Concept: Finding the Vertex

The x-coordinate of the vertex is the same as the axis of symmetry. Plug that value into the equation to find the y-value.

Steps to Graphing a Quadratic without a Table

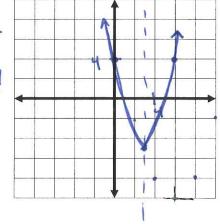
Find the axis of symmetry $X = -\frac{b}{aa}$

Find the vertex by plugging in the axis of symmetry.

Find another point by choosing an x-value.

Mirror that point across the axis of symmetry

Example 1: Graphing $y = ax^2 + bx + c$


Graph the $y = x^2 - 6x + 4$ without a table. Identify the axis of symmetry, the vertex, and the y-intercept.

Axis of Symmetry:
$$x = 3$$

$$\frac{-(-6)}{2(1)} = \frac{6}{3}$$

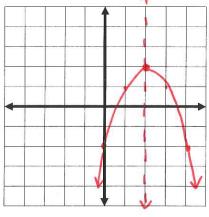
Vertex:
$$(3, -5)$$
 $y = (3)^{2} - 6(3) + 4$

$$y - intercept: (0, 4)$$
 $y = 9 - 18 + 4$

easiest point
$$y = -9+4$$

to choose $y = -5$

Now It's Your Turn


Graph the $y = -x^2 + 4x - 2$ without a table. Identify the axis of symmetry, the vertex, and the y-intercept.

Axis of Symmetry:
$$x = \frac{2}{a(-1)} = \frac{-4}{a}$$

Vertex:
$$(\frac{2}{2}, \frac{2}{2})$$
 $y = -2^{2}+4(2)-2$

y-intercept:
$$(0, \frac{-2}{2})$$
 $y = -4+8-2$

y-intercept:
$$(0, \frac{-a}{a})$$
 $y = -4+8-4$
 $y = -0^3 + 4(0) - a$ $y = 4-a$
 $y = -a$

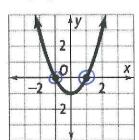
Summary:

Learning Target: Today you will be able to SOLVE QUADRATIC EQUATIONS BY GRAPHING AND USING SQUARE ROOTS

Question/Main Ideas:

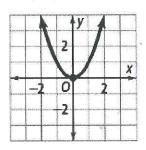
Notes:

Concept: Solutions of a Quadratic Function


The solutions are where the graph crosses the x-axis. Also known as...

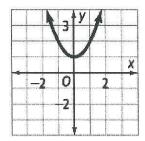
x-intercepts and roots

Example 1: Solving by Graphing


What are the solutions of each equation? Use a graph of the related function.

Graph $y = x^2 - 1$.

$$X = -1, 1$$


Graph $y = x^2$.

$$X = 0$$

$\mathbf{G}x^2 + 1 = 0$

Graph $y = x^2 + 1$.

No Solution

Example 2: Solving Using Square Roots

Solve each equation.

a.
$$x^2 = 81$$

$$\sqrt{x}^{2} = \sqrt{81}$$

$$X = \pm \circ$$

b.
$$3x^2 - 75 = 0$$

$$\frac{3x^2}{3} = \frac{75}{3}$$

+75+75

$$\sqrt{X^2} = \sqrt{25}$$

Now It's Your Turn

Solve each equation.

a.
$$x^2 - 36 = 0$$

 $+36 + 36$
 $X = \pm 6$

b.
$$3x^{2} + 15 = 0$$

$$-15 - 15$$

$$3x^{2} = -15$$

$$3$$

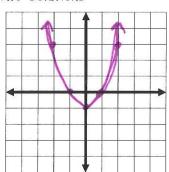
$$\sqrt{X}^{2} = \sqrt{-5}$$

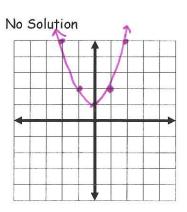
No

One-Solution

solution

c.
$$4x^{2} + 16 = 16$$


$$\frac{-16 - 16}{4x^{2}} = 0$$


$$\sqrt{X^{2}} = 0$$

$$X = 0$$

How many Solutions does the Quadratic Function have?

Two-Solutions

$$x^2 = \alpha$$

a = 0

 $\chi^2 = \alpha$ $\alpha \neq 0$

Summary:

Learning Target: Today you will be able to SOLVE QUADRATICS BY FACTORING

Question/Main Ideas:	Notes:						
Maes Hour Wall Tagas.	1401621						
Concept: Zero Product Property	one number has to be zero						
	a.b=0 then a or b is zero.						
Example 1: Using the Zero-Product	Use the Zero-Product Property to find the solutions to the given equations.						
Property	a. $(4x + 1)(x - 2) = 0$ b. $(x + 1)(x - 5) = 0$						
	4x+1=0 $x-2=0$ $x+1=0$ $x-5=0$						
	-1-1 t2+2 -1-1 t5+5						
	$\frac{4x}{4} = -\frac{1}{4} \qquad X = 2 \qquad X = -1 \qquad X = 5$						
1	$X = -\frac{1}{4}$						
Now It's Your Turn	Use the Zero-Product Property to find the solutions to the given equations.						
	a. $(2x + 3)(x - 4) = 0$ b. $(7x - 2)(5x - 4) = 0$						
	2x+3=0 $X-4=0$ $7x-2=0$ $5x-4=0$ $-3-3$ $+4+4$ $+a+a$ $+4+4$						
	$\frac{-3 - 3}{2x} = \frac{+4 + 4}{3} = \frac{+4 + 4}{7} = \frac{+4 + 4}{7} = \frac{+4 + 4}{5} = \frac{+4 + 4}{5} = \frac{+4 + 4}{5} = \frac{-4}{5}$						
	$X = -\frac{3}{2} \qquad X = \frac{4}{5}$						
Steps to Solving by Factoring	Set the equation equal to zero						
	Factor out any common factors						
	Factor remaining polynomial						

set each factor equal to zero and solve

Example 2: Solve by Factoring

Solve by Factoring

a.
$$x^2 + 8x + 15 = 0$$

 $(x + 3)(x + 5) = 0$
 $x + 3 = 0$ $x + 5 = 0$
 $-3 - 3$ $x = -5 - 5$
 $x = -3$

b.
$$2x^{3}-15x^{2}+18x=0$$

 $X(2x^{2}-15x+18)=0$
 $X[(2x^{2}-12x)(-3x+18)]=0$
 $X[2x(x-6)-3(x-6)]=0$
 $X(x-6)(2x-3)$
 $X=0$
 $X=6$
 $X=\frac{3}{2}$

Now It's Your Turn

Solve by Factoring

a.
$$x^{2}-5x-14=0$$

 $(x-7)(x+2)=0$
 $X-7=6$ $x+2=0$
 $X=7$ $X=-2$

b.
$$x^3 + x^2 - 20x = 0$$

 $X(x^3 + x - 20) = 0$
 $X(x+5)(x-4) = 0$
 $X = 0$
 $X = 0$
 $X = 0$
 $X = 0$

Example 3: Writing in Standard Form First

Solve by Factoring.

a.
$$4x^2 - 21x = 18$$

$$-18^{-18}$$

$$4x^2 - 21x - 18 = 0$$

$$-18.4 = -72$$

$$(4x^{2} - 24x) + (3x - 18) = 0$$

$$4x(x-6) + 3(x-6) = 0$$

$$(x-6)(4x+3) = 0$$

$$X-6=0$$

$$4x + 3 = 0$$

$$X = 6$$

$$X = 6$$

$$X = -\frac{3}{4}$$

Summary: _____

Learning Target: Today you will be able to SOLVE QUADRATIC EQUATIONS BY COMPLETING THE SQUARE

Question/Main Ideas:

Notes:

Concept: Perfect Square Trinomial

Factor each of the following trinomials.

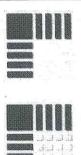
a.
$$x^2 + 8x + 16$$

b.
$$x^2 - 6x + 9$$

c.
$$x^2 + 12x + 36$$

$$(x+4)^2$$

$$(x+4)^2$$
 $(x-3)^2$


$$(x+6)^{2}$$

d. What do you notice about each of the three problems above? How does each answer relate to the original problem?

- · Perfect Square Trinomials
- · Answer is a binomial squared

Concept: Completing the Square

$$x^{a} + 10x + \underline{a5}$$
Half of b squared
 $\left(\frac{b}{a}\right)^{a}$

Example 1: Finding c to Complete the Square

Find the value of c that makes the following perfect square trinomials.

a.
$$x^2 - 16x + c$$

$$\left(-\frac{16}{a}\right)^2$$

Your Turn:
$$x^2 + 20x + c$$

$$\left(\frac{20}{a}\right)^2$$

Example 2: Solving $x^2 + bx = c$

Solve the following by completing the square.

a.
$$x^2 + 6x = 216$$

$$x^{2}+6x+9=216+9$$

 $\sqrt{(x+3)^{2}}=\sqrt{225}$
 $x+3=\pm 15$

$$X + 3 = 15$$

$$X = 12$$

$$X = 12$$
 $X = -18$

Your Turn:
$$x^2 - 4x = 90$$

$$x^{2}-4x+4=90+4$$

 $(x-a)^{2}=\sqrt{94}$
 $x-a=49.7$

$$X-2=9.7$$
 $X-2=-9.7$

$$X = 11.7$$

$$X = 11.7$$
 $X = -7.7$

Example 3: Solving $x^2 + bx + c = 0$

Solve the following by completing the square.

a.
$$x^2 - 8x - 48 = 0$$

$$\sqrt{(x-4)^2} = \sqrt{64}$$

 $x-4=\pm 8$

$$X-4=8$$
 $x-4=-8$

$$X = 12$$
 $X = -4$

$$X = -4$$

b.
$$x^2 - 14x + 16 = 0$$

$$x^2 - 8x - 48 = 0$$

 $x^2 - 8x + 16 = 48 + 16$
 $x^3 - 14x + 16 = 0$
 $x^3 - 14x + 49 = -16 + 49$

$$(x-7)^2 = \sqrt{33}$$

$$X-7 = \pm 5.7$$

$$X = 12.7$$
 $X = 1.3$

Now It's Your Turn

Solve the following by completing the square.

a.
$$x^2 + 10x - 75 = 0$$

$$x^{2} + 10x + 25 = 75 + 25$$

 $\sqrt{(x+5)^{2}} = 100$
 $x+5 = \pm 10$

$$X = 5$$
 $X = -15$

b.
$$x^2 - 18x + 53 = 0$$

$$x^2 + 10x + 25 = 75 + 25$$
 $x^2 - 18x + 81 = -53 + 81$

$$(x-9)^2 = \sqrt{28}$$

$$X - 9 = \pm 5.3$$

$$x-9=5.3$$
 $x-9=-5.3$

$$X = 14.3$$
 $X = 3.7$

$$X = 3.7$$

Summary:

Name _____Class Benied

Learning Target: Today you will be able to SOLVE QUADRATIC EQUATIONS USING THE QUADRATIC FORMULA AND FIND THE NUMBER OF SOLUTIONS OF A QUADRATIC EQUATION

Question/Main Ideas:	Notes:
Concept: Quadratic Formula	$y = ax^{2} + bx + c$ $X = \frac{-b^{\pm} \sqrt{b^{2} - 4ac}}{2a}$
Example 1: Using the Quadratic Formula	Solve using the Quadratic Formula. Round to the nearest hundredth is necessary. a. $x^2 - 8 = 2x$ $x^2 - 3 = 2x$ $x = -2x - 8 = 0$ $x = -3x -$

Now It's Your Turn

Solve using the Quadratic Formula. Round to the nearest hundredth is necessary.

a.
$$7x^{2}-2x=8$$

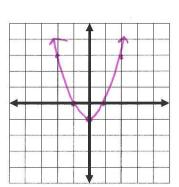
$$7x^{2}-2x-8=0$$

$$q=7 b=-a c=-8$$

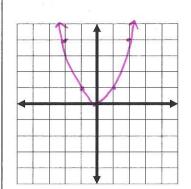
$$X = \frac{a \pm \sqrt{238}}{14}$$

$$X = \frac{a \pm 15.1}{14}$$

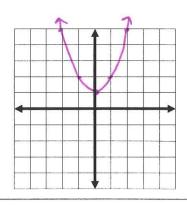
$$X = \frac{a \pm \sqrt{7}}{14}$$


$$X = \frac{3 \pm \sqrt{7}}{14}$$

$$X = \frac{7 + 15.1}{14}$$


Concept: The Discriminant

The part under the square root.


Two - Solutions

One - Solution

No Solution

Example 1: Using the Discriminant

How many real solutions does each equation have?

a.
$$2x^2 - 3x = -5$$

$$2x^{2}-3x+5=0$$

$$(-3)^2 - 4(a)(5)$$

Solution

b.
$$-2x^2 + 8x - 5 = 0$$

24 Two Solutions

Now It's Your Turn

How many real solutions does each equation have?

$$a - 6x^2 - 5x - 7$$

$$(-5)^2 - 4(6)(-7)$$

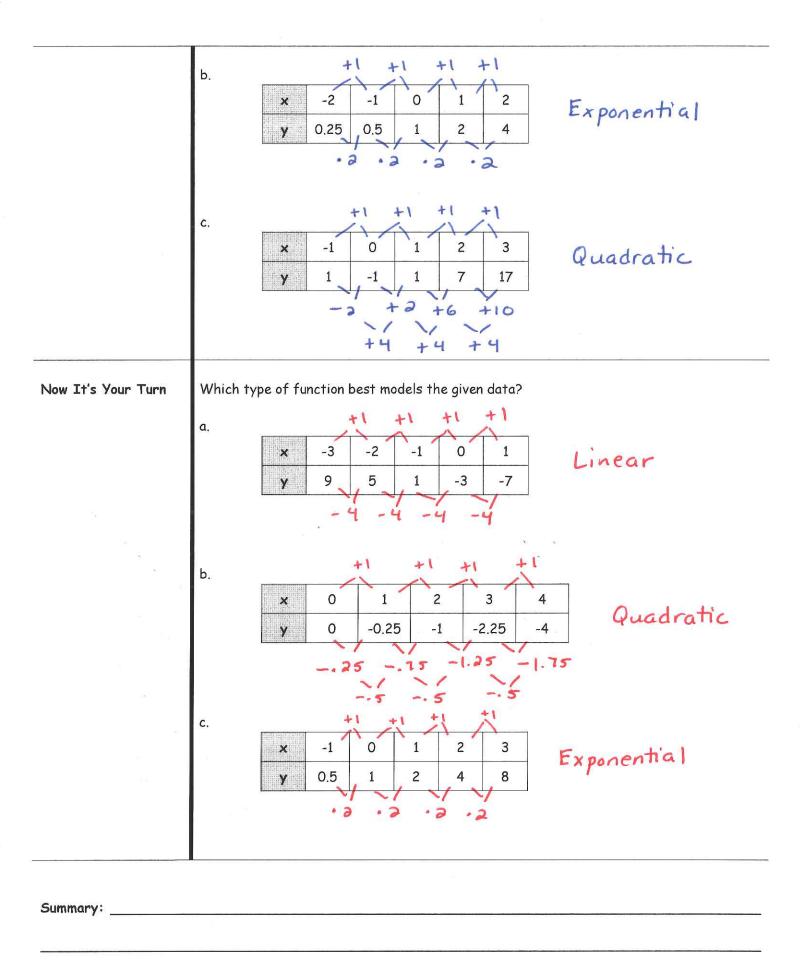
25 + 168 Two 193 Solutions

b.
$$2x^2 + 4x + 2 = 0$$

$$(4)^{2}-4(2)(2)$$

16-16 O One Solution

Summary: _


Learning Target: Today you will be able to IDENTIFY WHETHER A GIVEN SET OF DATA (GRAPH, TABLE, ETC) REPRESENTS A LINEAR, QUADRATIC, OR EXPONENTIAL MODEL

Question/Main Ideas:	Notes:					
Canada Cumman	Linear Functions	Quadratic Functions	Exponential Functions			
Concept Summary	y = mx + b	$y = ax^2 + bx + c$	y = a • b*			
	o x	O	X O			
Example 1: Choosing a model by graphing	Graph each set of points. What is as (1, 3), (0, 0), (-3, 3), (-1, -1), (-2, 0)	ich model is most appropriate b. (0, 2), (-1, 4), (1, 1), (2, 0.5)	c. (-1, -2), (0, -1),			
	Quadratic	Exponentia1	Linear			
Choosing a Model from a Table Linear Model: Both x and y go up or dow a constant rate (add/subtresponserial Model: The y values go up or down a constant ratio (multiply)						
	Quadratic Model: The second differences in the					
Example 2: Choosing	Which type of function best	models the given data?				

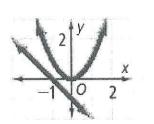
Example 2: Choosing W
a Model using
Differences or Ratios a.

x -2 -1 0 1 2 y -1 2 5 8 11 +3 +3 +3 +3

Linear

Learning Target: Today you will be able to SOLVE A SYSTEM OF EQUATIONS THAT INCLUDES A LINEAR EQUATION AND A QUADRATIC EQUATION

Question/Main	Ideas:
---------------	--------


Notes	1
-------	---

Types of Solutions

L			
	2		
		7_	X
-2	0	and the second	2

Two Solutions

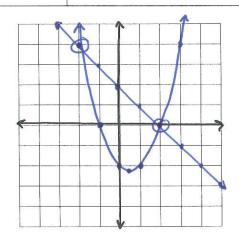
One Solution

No Solutions

Example 1: Solving by Graphing

Solve the following system by graphing.

$$y = x^2 - x -$$

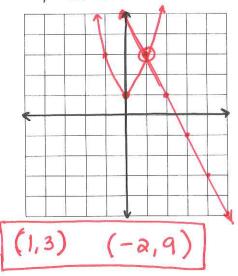

$$y = x^{2} - x - 2$$

$$y = -x + 2$$

$$(-2, 4)$$

$$(a, 0)$$

$$X = -\frac{b}{aa} = -\frac{(-1)}{a(1)} = \frac{1}{a}$$



Now It's Your Turn

Solve the system by graphing.

$$y = 2x^2 + 1$$

$$y = -2x + 5$$

$$X = -\frac{b}{aa} = -\frac{0}{a(a)} = 0$$

Graph is not the best option because and point didn't show up.

Key to Solving by Elimination	Subtract the two equations to eliminate y, combine like terms.
Example 2: Solve by Elimination	Solve the following systems by elimination. Now It's Your Turn $3a(5)+74$ a. $y = 20x + 124$ $y = -x^2 + 39x + 64$ b. $y = 32x + 74$ $-y = -x^2 + 39x + 64$ 32(2) 774
	$y = -x^{2} + 39x + 64$ $ao(4) + 124$ $0 = x^{2} - 7x + 10$ 138 -y = 20x + 124 aoy $0 = (x-5)(x-2)$
	$0 = -x^{2} + 19 x - 60$ $0 = -1(x^{2} - 19 x + 60)$ $0 = -1(x - 15)(x - 4)$ $(2, 138)$
41	X = 15,4 (15,424) (4,204)
Key to Solving by Substitution	Substitute y from one equation into the other, then solve.
Example 2: Solve by . Substitution	Solve the following systems by substitution. Now It's Your Turn
	a. $y = x^2 - 6x + 10$ y = 4 - x b. $y - 30 = 12xy = x^2 + 11x - 12$
	$4-x = x^{2}-6x+10$ $0 = x^{2}-5x-6$ $0 = (x-3)(x-2)$ $30+12x = x^{2}+11x-12$ $0 = x^{2}-x-42$ $0 = (x-7)(x+6)$
	X=3,a Y=7,-6 Y=3,a Y=7,-6

ummary:	Note that the second se		