Learning Target: Today you will be able to SIMPLIFY EXPRESSIONS INVOLVING ZERO AND NEGATIVE EXPONENTS

Question/Main	Ideas:
---------------	--------

Notes:

Exploration of Exponents

Complete the following table WITHOUT a calculator and then answer the given questions.

2 ^x	10*
24 = 16	104 = 10000
2 ³ =	10 ³ = 1000
2 ² =	102 = 100
2 ¹ =	101 =
20 =	100 =
2 ⁻¹ = //a	$10^{-1} = _{10}$
2-2 = 1/4	10 ⁻² = 100

a. How does the value of the exponential expression change when you decrease the exponent by 1?

b. What do you think the value of 5^{-2} is (written as a fraction)?

$$\frac{1}{5^2} = \frac{1}{25}$$

Property: Zero Exponents

$$4^{\circ} = 1 \quad (-3)^{\circ} = 1 \quad (5.14)^{\circ} = 1$$

Property: Negative Exponents

For every nonzero number a, a-n = 1 an

$$7^{-3} = \frac{1}{7^3} = \frac{1}{343}$$
 $(-6)^{-2} = \frac{1}{(-6)^2} = \frac{1}{36}$

Example 1: Simplifying Powers

Simplify.

a.
$$9^{-2} = \frac{1}{9^2} = \frac{1}{81}$$

b.
$$(-3.6)^0 =$$

Now It's Your Turn

Simplify.

a.
$$4^{-3} = \frac{1}{4^3} = \frac{1}{64}$$

b.
$$(-5)^0 = 1$$

c.
$$3^{-2} = \frac{1}{3a} = \frac{1}{9}$$

d.
$$6^{-1} = \frac{1}{6} = \frac{1}{6}$$

e.
$$(-4)^{-2} = \frac{1}{(-4)^2} = \frac{1}{16}$$

Example 2: Simplifying Exponential Expressions

Simplify.

a.
$$5a^3b^{-2} = \frac{5a^3}{b^2}$$

b. $\frac{1}{x^{-5}} = x^{5}$

base w/ negative exponent

negative exponents become positive when moved up.

Now It's Your Turn

Simplify.

a.
$$x^{-9} = \frac{1}{x^{9}}$$

b.
$$\frac{1}{n^{-3}} = n^{3}$$

c.
$$4c^{-3}b = \frac{4b}{c^3}$$

d.
$$\frac{2}{a^{-3}} = 2a^{3}$$

e.
$$\frac{n^{-5}}{m^2} = \frac{1}{m^2 n^5}$$

Summary:

Name	
Date	Class Period

Learning Target: Today you will be able to WRITE NUMBERS IN SCIENTIFIC AND STANDARD NOTATION AND COMPARE AND ORDER NUMBERS USING SCIENTIFIC NOTATION

A number written as a product in the form a x10 n where n is an integer and 1 4 a 4 10					
Is the number written in scientific notation? If not, explain. a. $0.23 \times 10^{-3} = No$ b. $2.3 \times 10^{7} = Yes$ c. $9.3 \times 100^{9} = No$ Not between 1-10 base \$\pm\$10					
Write each number in scientific notation. a. $157.090.000 = 1.5709 \times 10^8$ b. $0.061 = 6.1 \times 10^{-2}$					
Write each number in scientific notation. a. $678,000 = 6.78 \times 10^{5}$ b. $0.9000302 = 3.02 \times 10^{-5}$ c. $51,040,000 = 5.104 \times 10^{7}$ d. $0.0000007 = 7 \times 10^{-7}$					
Write each number in standard notation. a. $2.96 \times 10^3 = 3.960$ b. $1.93 \times 10^{-5} = 0.0000193$					
Write each number in standard notation. a. $5.23 \times 10^7 = 5330000$ b. $4.6 \times 10^{-5} = 0.000046$ c. $2.09 \times 10^{-4} = 0.000009$ d. $3.8 \times 10^{12} = 3800000000000000000000000000000000000$					

¥

Learning Target: Today you will be able to MULTIPLY POWERS WITH THE SAME BASE

Question/Main Ideas:	Notes:		11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	
Exploration: Complete	Product of Powers	Expanded Product	Number of Factors	Product as a Power
the Table and Answer	7 ³ • 7 ²	(7 • 7 • 7) • (7 • 7)	5	7 ⁵
the Given Questions	2 ⁴ • 2 ⁴	(2.2.2.2) (2.2.2.2)	8	28
	x ⁴ • x ⁵	$(xxxx) \cdot (xxxxx)$	9	x 9
	m•m⁵	m · (mmmmm)	6	m 6
	$3^2 \cdot 3^4 \cdot 3^2$	$(3.3) \cdot (3.3.3.3)(3.3)$	8	3 8
	y ⁵ • y • y ³	(44944) (4) (444)	9	y 9
	b. What do you column and the The fi the c. Do you see a without the t	the answer in the last column? The base stayed the notice about the exponents of the orine exponent of the answer in the last and exponent is the original exponent shortcut that could get you from the two middle columns? Tust add the origin	ginal products in column? sum of s. original problem	to the answer
Property: Multiplying Powers with the Same Base	a ^m ·a ⁿ	$=a^{m+n}$		
Example 1: Multiplying Powers	Write each expression using each base only once.			
	a. 12 ⁴ •12 ³	b. $(-5)^{-2}$		
	1a4+3	(-5	(-5) ⁵	
	127	/	-15	

Now It's Your Turn	Write each expression using each		
	a. 8 ³ • 8 ⁶ b.	$(0.5)^{-3} \bullet (0.5)^{-8}$	c. $9^{-3} \cdot 9^2 \cdot 9^6$
	8 3+6	$(0.5)^{-3+-8}$	9-3+2+6
	8 9	$(0.5)^{-11} = 2^{11}$	95
Example 2: Multiplying Powers in	Simplify.	s	
Algebraic Expressions	a. 4z ⁵ •9z ⁻¹²	b. 2a • 9b ⁴ • 3a ²	
	(4.9)(z5.z-12)	(a.9.3)(a.	92)(64)
	$36z^{-7} = \frac{36}{z^{7}}$	54a3b	1
Now It's Your Turn	Simplify.		
	a. $5x^{4} \cdot x^{9} \cdot 3x$ b. $(5 \cdot 3) (x^{4} \cdot x^{9} \cdot x)$ (15 x^{14}	$-4c^{3} \cdot 7d^{2} \cdot 2c^{-2}$ $(-4 \cdot 7 \cdot 2)(c^{3}c^{-2})(d^{2})$ $-56 c d^{2}$	c. $j^{2} \cdot k^{-2} \cdot 12j$ $12(j^{3} \cdot j) k^{-2}$ $12j^{3} k^{-2}$ $12j^{3}$
Example 3: Multiplying Numbers in Scientific Notation	What is the simplified form of (3 notation. (3.5)(10	$(x \cdot 10^5)(5 \times 10^{-12})$? Write your of	inswer in scientific
	15 × 10	_	
	1.5 x l		
	1.5 %1		
Now It's Your Turn	What is the simplified form of (7	$(\times 10^8)(4 \times 10^5)$? Write your an	swer in scientific
	notation. (7.4)(10	8.105)	
	28 x 1	013	
ş	2.8 x		

Summary:

Learning Target: Today you will be able to RAISE A POWER TO A POWER AND RASIE A PRODUCT TO A POWER

Question/Main Ideas:	Notes:				
Exploration: Complete the Table and Answer	Power of a	Partially Expanded Product	Completely Expanded Product	Number of Factors	Product as a Power
the Given Questions	$(5^2)^3$	$(5^2) \cdot (5^2) \cdot (5^2)$	(5 • 5) • (5 • 5) • (5 • 5)	6	5 ⁶
	$[(-3)^2]^2$	$(-3)^2 \cdot (-3)^2$	(-33) (-33)	4	34
	$(b^2)^4$	(b2)·(b2)(b2)(b2)	(66)(66)(66)	8	b8
		ne two middle columns?	original expone		answer
Property: Raising a Power to a Power		(am)n =	a ^{m·n}		
Example 1: Simplifying a Power Raised to a Power	Write each expression using each base only once. a. $(n^4)^7 = n^{4 \cdot 7}$ b. $(x^{-3})^5 = x^{-3 \cdot 5}$ $= n^{38}$ $= x^{-15}$				
		= n ^{a 8}	= X = -	-15 1 X 15	
Example 2: Simplifying an Expression with Powers	Simplify y ³ ()	$(x^5)^{-2} = y^3 \cdot y^5$			
Now It's Your Turn	Simplify.				
	a. $x^{2}(x^{6})^{-4}$	No. of the second secon	c. (1 2 · w 21 19	r ⁻⁵) ⁻² r ³	

Exploration: Complete the Table and Answer	Product to a Power	Expanded Product	Grouped Products	Simplified with Powers	Product as a Power	
the Given Questions	(4m) ³	(4m) • (4m) • (4m)	(4 • 4 • 4) • (m • m • m)	4 ³ m ³	64m³	
	(ab) ⁴	(ab)(ab)(ab)(ab)	(aaaa) (bbbb)	a464	a464	
	$(3xy)^2$	(3×y)(3×y)	(3.3)(xx) (yy)	32x2y2	9x2y2	
		a shortcut that could go e two middle columns?	et you from the original pro	oblem to the o	inswer	
	Ju	st distribute	e the exponer	nt to		
	each "piece" in the parenthesis					
Property: Raising a Power to a Power	$(ab)^n = a^n b^n$					
			=	Digital Control of the Control of th	AND THE RESERVE OF THE PERSON	
Example 3: Simplifying an Expression with	Simplify $(n^5)^2 (4mn^{-2})^3 = n^{10} \cdot 4^3 \cdot m^3 \cdot (n^{-2})^3$ = $n^{10} \cdot 64 \cdot m^3 \cdot n^{-6}$					
Products	= 64 m ³ n ⁴					
Now It's Your Turn	Simplify.					
Now It's Your Turn Simplify. a. $(x^{-2})^2(3xy^5)^4$ b. $(6ab)^3(5a^{-3})^2$ c. $(3c^5)^4(c^2)^4$ for $x^{-4} \cdot 3^4 x^4 y^{-20}$ for $x^{-2} \cdot 3^4 x^2$					6	
	oig		93			
* · · · · · ·	, II	n 8 g y	a a a a a			
Summary:			1 6			

Summary:	(()	
	9)	
	3 40	

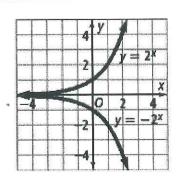
Learning Target: Today you will be able to DIVIDE POWERS WITH THE SAME BASE AND RAISE A QUOTIENT TO A POWER

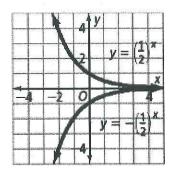
Question/Main Ideas:	Notes:				
Exploration: Complete the Table and Answer	Division of Powers	Expanded Product	Simplified Product	Number of Factors Left	Quotient as a Power
the Given Questions	$\frac{x^7}{x^3}$	<u> </u>	x • x • x • x	4	x 4
	$\frac{b^5}{b^8}$	<u>bbbbb</u> bbbbbbb	bbb	-3	1 b ³
	6a ⁵ 2a ⁹	3.2aaaaa 2aaaaaaaaa	3 aaaa	-4	р ³ 3 а4
Property: Dividing Powers with the Same Base $\frac{a}{a} = a - n$					
Powers with the Same Base		$\frac{a}{a^n}$ =	am-n		
Example 1: Dividing	Simplify		4-		-
Algebraic Expressions	a. $\frac{x^8}{x^3} =$	$x^{8-3} = x^{5}$	b. $\frac{m^2 n^4}{m^5 n^3} = rr$	2-5 n4-	-3
	-		= }	$\frac{n^{-3}}{m^3}$	
Now It's Your Turn	Simplify	F 1 6 9			
	a. $\frac{y^5}{y^4}$ =	y 5-4 b. $\frac{d^3}{d^9}$	= d 3-9	$\frac{k^6 j^2}{k j^5} = K$	6-1 ; 2-

	d. $\frac{a^{-3}b^7}{a^5b^2} = a^{-3-5}b^{7-2}$ $= a^{-8}b^5$ $= \frac{b^5}{a^8}$ e. $\frac{x^4y^{-1}z^8}{x^4y^{-5}z} = x^{4-4}y^{-1+5}z^{8-1}$ $= x^9y^4z^7$
Property: Raising a Quotient to a Power	$\left(\frac{9}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$
Example 2: Raising a Quotient to a Power	Simplify. a. $\left(\frac{z^4}{5}\right)^3 = \frac{(z^4)^3}{5^3} = \frac{z^{12}}{125}$ b. $\left(\frac{4}{x^3}\right)^{-2} = \frac{4^{-2}}{(x^3)^{-2}} = \frac{4^{-2}}{x^{-6}} = \frac{x^6}{4^2} = \frac{x^6}{16}$
Concept: Raising a Quotient to a Negative Power	$\left(\frac{q}{b}\right)^{-n} = \left(\frac{b}{q}\right)^n$
Example 3: Simplifying an Exponential Expression	Simplify $\left(\frac{2x^6}{y^4}\right)^{-3} = \left(\frac{y^4}{2x^6}\right)^3 = \frac{(y^4)^3}{2^3(x^6)^3} = \frac{y^{12}}{8x^{18}}$
Now It's Your Turn	Simplify $\left(\frac{a}{5b}\right)^{-2} = \left(\frac{5b}{a}\right)^2 = \frac{5^2b^2}{a^2} = \frac{a5b^2}{a^2}$
Summary:	

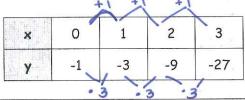
Learning Target: Today you will be able to EVALUATE AND GRAPH EXPONENTIAL FUNCTIONS

Question/Main Ideas: Notes:


Concept: Exponential


Functions

where a \$0 and


670

Examples of Exponential Functions

Example 1: Identifying an Exponential Function Does the table represent an exponential function? Explain.

Yes because the y-values change by a common factor

Now It's Your Turn

Does the table represent an exponential function? Explain.

a.

X	0	1	2	3	4	5
• <i>y</i> •	2	2.6	3.38	4.394	5.7122	7.42586
-		3	1.3			

Yes multiplied by

b.

х	0	1	2	3	4	5
У	500	550	605	665.5	732.05	805.255

Yes multiplied by

C.

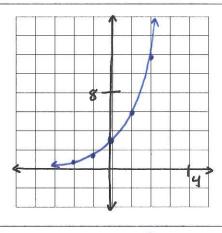
X	0	1	2	3	4	5
y	2.3	3.8	5.3	6.8	8.3	9.8

No, goes up by a constant (Linear)

d.

X	1	2	3	4	5
y	1/2	1 4	1 6	1 8	1 10

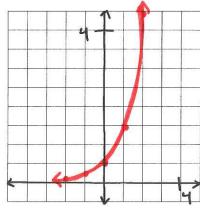
No, not multiplied each time

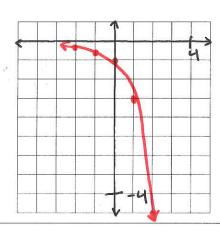

Example 2: Identifying an Exponential Function Does the rule represent an exponential function? Explain.

exponent is not a variable.

a. y=3x2 - No because the b. y=3.6x - Yes the exponent is a variable

Example 3: Graphing an Exponential **Function**


Graph $y = 3 \cdot 2^{\times}$


Now It's Your Turn

a. Graph $y = 0.5 \cdot 3^{\times}$

×	0.5.3×	4
-2	0.5 - 3-2	0.06
-1	0.5.3-1	6.17
0	0.5.30	0.5
1	6.5.3	1.5
OL	10.2.3	4.5

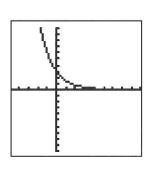
b. Graph y = -0.5 · 3×

Summary: _____

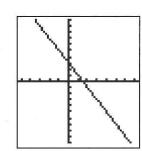
Learning Target: Today you will be able to IDENTIFY WHETHER A GIVEN RELATIONSHIP IS EXPONENTIAL GROWTH OR EXPONENTIAL DECAY AND CALCULATE THE GROWTH FACTOR.

Question/Main Ideas:	Notes:	
Concept: Exponential Growth	y=a·b×	
	a - initial amount	***
	b- growth factor	
Concept: Exponential Decay	y=a.bx	
	a-initial amount	
v.	b-decay factor	
Example 1: Growth versus Decay from an Equation		
- Company (Wil	a. $y = -3\left(\frac{5}{2}\right)^x$ Growth b. $y = 4$	exponent is

Now It's Your Turn


State whether the equation represent exponential growth, exponential decay, or neither. If it is exponential, identify the growth/decay factor.

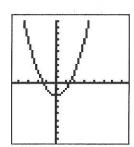
a.
$$y = 5 \cdot \frac{1}{2}^x$$
 Decay


Example 2: Growth versus Decay from a Graph

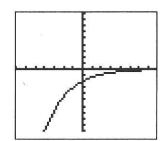
State whether the graph represent exponential growth, exponential decay, or neither.

a

Exponential Description



Neither


Now It's Your Turn

State whether the graph represent exponential growth, exponential decay, or neither.

α.

Neither

Exponential Decay

Example 3: Growth versus Decay from a Table

State whether the graph represent exponential growth, exponential decay, or neither. If it is exponential, identify the growth/decay factor.

a.

×	0	1	2	3
у	1	3	9	27

b.

х	0	1	2	3
У	3	6	9	12

Neither

Now It's Your Turn

State whether the graph represent exponential growth, exponential decay, or neither. If it is exponential, identify the growth/decay factor.

a

×	0	1	2	3
у	200	100	50	25

h

×	0	1	2	3
У	1	2	8	48

Neither

Summary:

Learning Target: Today you will be able to CALCULATE COMPOUND INTEREST

Question/Main Ideas:

Notes:

Exploring Exponential Functions with Percents

You are going to invest \$500 into an account that earns 5% interest each year. Complete the table which represents the amount of money in the account at the end of each year.

Years	0	1	2	3	4	
Amount in Account	500	525	551.25	578.81	607.75	,

a. The above table represents an exponential function. Identify it as growth or decay and find the growth/decay factor.

c. How does the growth/decay factor relate to the 5% from the problem?

d. Write an exponential equation that represents the data in the table?

You buy a car for \$25,000. Cars depreciate (meaning they lose value) at a rate of 5% per year. Complete the following table which represents the amount the car is worth after each year.

Years	0	1	2	3	4
Cars Worth (\$)	25000	23750	22562	21434	20 362

a. The above table represents an exponential function. Identify it as growth or decay and find the growth/decay factor.

c. How does the growth/decay factor relate to the 5% from the problem?

d. Write an exponential equation that represents the data in the table?

Concept: Exponential Functions with

Percents

Exponential Growth

starting amount

Exponential Decay

A = P(1+r) to time A = P(1-r) to time

ant $\int rate(decimal)$ Amount $\int rate(decimal)$

Starting Amount

Example 1: Modeling Exponential Growth/Decay	Since 2005, the amount of money spent at restaurants in the United States has increas about 7% each year. In 2005, about \$360 billion was spent at restaurants. If the trencontinues, about how much will be spent at restaurants in 2015? Write an exponential equation to model the situation. $A = 360 (1+0.07)^{\pm}$ $A = 360 (1.07)^{10}$ $A = 360 (1.07)^{\pm}$			
Now It's Your Turn	The kilopascal is a unit of measure for atmosph at sea level is about 101 kilopascals. For every decreases about 11,5%. What is the approxima Write an exponential equation to model the sit	1000-m increase in altitude, the pressure te pressure at an altitude of 3000 m? uation.		
	A = 101 (1 - 0.115) A	= 101 (0.885)3		
	A=101 (0.885)t	A= 70 kilopascals		
Formula: Compound Interest	$A = P\left(1 + \frac{r}{n}\right)^{nt} r$	= Amount n = times compounded per year = rate (decimal) = time		
Example 2: Compound Interest	Suppose that when your friend was born, your account paying 4.5% interest compounded quar after 18 years?	terly. What will the account balance be		
e A n	$A = 2000 \left(1 + \frac{0.045}{4}\right)^{4.18}$	A = \$4,475.53		
Now It's Your Turn	Suppose the account above pays 3.8% interest account be after 18 years?	*		
	A = 2000 (1+ 0.038) 12.1	A = 3959.30		

Summary:				
× 14 • 1	 (3)	6	2	