Learning Target: Today you will be able to FIND RATES OF CHANGE FROM TABLES AND FIND SLOPE

Question/Main Ideas:	Notes:
Definition: Rate of	Shows the relationship between two quantities.
Change	rate of change = change in dependent variable
	change in independent variable

Example 1: Finding
Rate of Change Using
a Table

The table shows the distance a band marches over time. Is the rate of change in distance with respect to time constant? What does the rate of change represent?

	Time (min)	Distance (ft)	W.
+1 <	1	260	>+260
+1 <	2	520	
+1 (3	780) +260
+1 <	4	1040	>+260

Time - independent

Distance - dependent

rate of change = 260 ft

I min

The band marches 260ft every minute.

Definition of Slope

That graph below represents the points from Example 1.

Slope (m) = $\frac{\text{vertical change}}{\text{horizontal change}}$ = $\frac{\Delta y}{\Delta x}$

run

Example 2: Finding Slope Using Graphs

What is the slope of each line?

 $m = -\frac{3}{3}$ $= -\frac{1}{1}$ = -1

Now It's Your Turn

What is the slope of each line?

Key Concept: The Slope Formula

slope (m) =
$$\frac{y_a - y_1}{x_a - x_1}$$
 (x, , y,)

Example 3: Finding the Slope Using Points

Find the slope of the line that passes through the given points.

$$\frac{y_{a}-y_{1}}{x_{a}-x_{1}}=\frac{-2-0}{3++1}=\frac{-2}{4}=\frac{-1}{2}$$

$$\frac{y_{a}-y_{1}}{x_{a}-x_{1}} = \frac{-2-0}{3++1} = \frac{-2}{4} = -\frac{1}{2}$$
 $\frac{y_{a}-y_{1}}{x_{a}-x_{1}} = \frac{1++2}{-2++2} = \frac{3}{0}$ = undefined

Now It's Your Turn

Find the slope of the line that passes through the given points.

a. (-3, 2) and (2, 2)

$$\frac{y_a - y_1}{x_a - x_1} = \frac{a - a}{a + + 3} = \frac{o}{5} = 0 \qquad \frac{y_a - y_1}{x_a - x_1} = \frac{-1 - 3}{4 - 1} =$$

$$\frac{y_3-y_1}{x_3-x_1}=\frac{-1-3}{4-1}=\frac{-4}{3}$$

Concept Summary: Slopes of Lines

Positive Slope

slants upward left to right

Negative Slope

slants downward left to right

Zero Slope

Horizontal

Undefined Slope

Vertical

Name			
Date	Class	Period	

Learning Target: Today you will be able to WRITE AND GRAPH AN EQUATION OF DIRECT VARIATION

Question/Main Ideas:	Notes:
Definition: Direct Variation	A relationship that can be represented by a function in the form y= kx, where K \$0
Definition: Constant of Variation for Direct Variation	The k in y=kx represents the constant of variation. You can find k $k = \frac{y}{x}$
Example 1: Identifying a Direct Variation	Does the equation represent a direct variation? Is so, find the constant of variation. a. $\frac{7y}{7} = \frac{2x}{7}$ Yes; $k = \frac{2}{7}$ b. $\frac{3y}{4} + \frac{4x}{8}$ $y = -\frac{4}{3} \times + \frac{8}{3}$ $y = -\frac{4x}{3} \times + \frac{8}{3}$ No
Example 2: Writing a Direct Variation Equation	Suppose y varies directly with x, and y = 35 when x = 5. What direct variation equation relates x and y? What is the value of y when x = 9? $K = \frac{9}{x} = \frac{35}{5} = 7$ $Y = 7(9)$ $Y = 7 \times$ $Y = 63$
Now It's Your Turn	Suppose y varies directly with x, and y = 10 when x = -2. What direct variation equation relates x and y? What is the value of y when x = -15? $K = \frac{9}{x} = \frac{10}{-3} = -5$ $Y = -5(-15)$ $Y = -5x$
Concept: Direct Variation Graphs	The graph of y=kx is a line that goes through (0,0) and a slope that is k.

Algebra I

5-3 Day 1: Quick Graphs in the form y = mx + b

Name _____ Class Period _____

Learning Target: Today you will be able to GRAPH LINES QUICKLY IN THE FORM Y = MX + B

Question/Main Ideas:	Notes:
Concept: Slope- Intercept Form	y=mx+b m=slope b=y-intercept
Definition: Linear Parent Function	Parent Function - simplest function in a family of functions. Linear Parent Function: y = x
Changing the Slope	Positive - slants upward; Negative - slants downward m >1 - steeper; 04 m 4 - less steep
Changing the Y- Intercept	The y-intercept shifts the graph up if positive and down if negative
Example 2: Graphing a Linear Equation WITHOUT a table of values	Graph the following. Find the slope and y-intercept. a. $y = -2x - 1$ b. $y = \frac{2}{3}x - 5$ Slope = $\frac{2}{3}$ y - intercept = $\frac{2}{3}$ y - intercept = $\frac{2}{3}$

Now It's Your Turn

Graph the following. Find the slope and y-intercept.

a.
$$y = -3x + 4$$

b.
$$y = 4x - 8$$

Slope =
$$\frac{-3}{}$$
 y - intercept = $\frac{4}{}$ Slope = $\frac{4}{}$ y - intercept = $\frac{-8}{}$

Steps to Quick Graphing

Identify the slope and y-intercept.

Plot the y-intercept on the y-axis

Use the slope, from the y-intercept, to find a second point

Connect the dots, extend the line, add arrows.

Summary:				
Validad Incidential Control of the C		 		

Question/Main Ideas:

Notes:

Reminder: Slope-Intercept Form

$$y = mx + b$$

Example 1: Writing a Linear Equations from a Graph

Write an equation for each line show below.

$$m = \frac{a}{1}$$

 $b = -a$

X

Example 2: Writing an equation from a Point and the Slope

Write an equation for the line with the given slope and goes through the given point.

Slope = -2; Point = (4, 5)

y = ax - a

$$5 = -a(4) + b$$

 $5 = -8 + b$
 $13 = b$
 $4 = -ax + 13$

Now It's Your Turn

Write an equation for the line with the given slope and goes through the given point.

Slope =
$$-\frac{6}{7}$$
; Point = (14, 2)

$$a = -\frac{6}{7}(14) + b$$

 $a = -12 + b$
 $14 = b$
 $y = -\frac{6}{7}x + 14$

Example 3: Writing an equation from Two Points

Write an equation for the line that passes through the given points.

(2,1) and (5,-8)
$$M = -\frac{8-1}{5-2}$$
use either
$$= -\frac{9}{3}$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -3$$

$$= -$$

Now It's Your Turn

Write an equation for the line that passes through the given points.

$$(3, -2) \text{ and } (1, -3)$$

$$m = -\frac{3 - -a}{1 - 3} \qquad x = 3$$

$$= -\frac{1}{-a} \qquad y = -a$$

$$= \frac{1}{-a} \qquad y = -\frac{1}{-a} \qquad y = \frac{1}{-a} \times -3.5$$

Steps to Writing Equations of Lines Given at Least One Point

Start with y=mx+b

Find $m\left(\frac{y_2-y_1}{x_2-x_1}\right)$ and plug it into y=mx+bPlug in (x,y) for x and y in the equation.

Solve for b.

Plug m and b into y=mx+b

Summary:		
and the second s		

Learning Target: Today you will be able to WRITE AND GRAPH EQUATIONS USING POINT-SLOPE FORM

Question/Main Ideas:

Concept: Point-Slope

Form

Notes:

$$y - y_1 = m(x - x_1)$$
 (x, , y,)

$$m = slope$$

Example 1: Writing an Equation in Point-Slope Form

Write an equation in point-slope form for the line with a slope of -5 and passes through the point (-3, 6). y - 6 = -5(x - -3)

$$9 - 6 = -5(x+3)$$

Now It's Your Turn

Write an equation in point-slope form for the line with a slope of $\frac{2}{3}$ and passes through 4--4= = (x-8) the point (8, -4).

$$y + 4 = \frac{2}{3}(x - 8)$$

Example 2: Graphing Using Point-Slope Form

Graph $y - 1 = \frac{2}{3}(x - 2)$.

Slope =
$$\frac{2}{3}$$

Your Turn: Graph $y + 7 = \frac{4}{5}(x - 4)$

Example 3: Using Two Points to Write an Equation in Point-Slope Form Write an equation in point-slope form of the line that passes through (-2, -3) and (1, 3).

$$m = \frac{3++3}{1++3}$$
 $= \frac{6}{3}$
 $= 2$

$$y + 3 = a(x + a)$$
or
 $y - 3 = a(x - 1)$

Now It's Your Turn

Write an equation in point-slope form of the line that passes through (4, 0) and (-2, 6).

$$m = \frac{6-0}{-2-4}$$
 $= \frac{6}{-6}$
 $= -1$

$$y = -1(x-4)$$

OR

 $y - 6 = -1(x+a)$

Example 4: Using a Table to Write an Equation

The table shows the altitude of a hot-air balloon during its linear descent. What equation in slope-intercept form gives the balloons' altitude at any time? What do the slope and y-intercept represent?

	Time, x (sec)	Altitude, y (m)
	10	640
204	30	590
	70	490
	90	440

$$m = \frac{\text{rise}}{\text{run}} = \frac{-50}{20} = -2.5$$

$$y = -2.5 \times + b$$

$$640 = -2.5(10) + b$$

$$640 = -25 + b$$

$$665 = b$$

· Slope means the balloon
falls 2.5 m/sec. $y = -2.5 \times +665$ · b means the balloon
starts at 665 m

ummary:		
	*	

Algebra I 5-5 Day 1: Standard Form Name _____ Class Period _____

Learning Target: Today you will be able to GRAPH LINEAR EQUATIONS USING INTERCEPTS

Question/Main Ideas:	Notes:		
Definition: y - intercept	when the graph crosses the y-axis occurs when x=0		
Definition: × - intercept	when the graph crosses the x-axis Occurs when y=0		
Concept: Standard Form of a Linéar Equation	· A, B, C are integers Ax + By = C · Some define A70		
Example 1: Finding x- and y- intercepts	What are the x- and y- intercepts of the graph of $3x + 4y = 24$? $ \frac{X - intercept!}{3x + 4(0) = 24} $ $ 3(0) + 4y = 24 $ $ 4y = 24 $		
Now It's Your Turn	What are the x- and y- intercepts of the graph of $5x - 6y = 60$?		
Steps to Graphing in Standard Form	Find the x-intercept using $y=0$ Find the y-intercept using $X=0$ Plot the intercepts		
	Connect the dots and extend.		

Example 2: Graphing a Line Using Intercepts

X = -2

x-intercept y-intercept x - a(0) = -a (0) - ay = -a- ay = -a 4=1

Now It's Your Turn

x-intercept y-intercept 2x=20 X=10

2x+5(0)=20 2(0)+5y=20 5y = 20

Concept: Horizontal and Vertical Lines

Horizontal Lines written as y = b, where b is a constant

Vertical Lines

written as X = 9, where a is a constant

Example 3: Graphing Horizontal and Vertical Lines

a. Graph x = 3

b. Graph y = 3

Summary: _

Learning Target: Today you will be able to CONVERT BETWEEN FORMS OF LINEAR EQUATIONS (SLOPE-INTERCEPT, POINT-SLOPE, AND STANDARD)

Question/Main Ideas:	Notes:	
Definition: Slope- Intercept Form	11 - 100 2/ + 10	slope y-intercept
Definition: Point-Slope Form		m=5lope (x,,y,)
Definition: Standard Form	Ax + By = C A,	B, C are integers
	From Point-Slope Form	From Standard Form
Concept: Converting to Slope-Intercept Form	Distribute m	Add 1 subtract the x-term
	Add/subtract y,	Divide by coefficient of y.
Example 1: Converting to Slope-Intercept Form	Rewrite each of the following linear equation a. $y - 6 = -3(x + 3)$ $y - 6 = -3 \times -9$	b. 3x - 5y = 17 -3 x - 3 x
	y = -3x - 3	$\frac{-5y}{-5} = \frac{-3x}{-5} + \frac{17}{-5}$ $y = \frac{3}{5} \times -3.4$
Now It's Your Turn	Rewrite each of the following linear equation a. $y + 3 = -3(x - 1)$ $y + 3 = -3 \times + 3$ $y = -3 \times + 3$ $y = -3 \times + 3$	b. $7x + 3y = -12$ $-7x$ $3y = -7x - 12$ $3 = -7x - 12$ $3 = -7x - 12$ $3 = -7x - 12$

	From Point-Slope Form	From Slope-Intercept Form
Concept: Converting to Standard Form	Distribute m	Use fraction busters - Multiply by common denom.
	Use fraction busters-mult. by the common denom. Add/subtract the	Add/subtract the x-term so both variables are on
	X-term Add Isubtract y,	Optional: Multiply the equation by -1 so A is positive.
Example 2: Converting to Standard Form	Rewrite each of the following linear equation	as in standard form.
To Standard Torm	a. $y-3 = -\frac{2}{3}(x+6)$ $(y-3 = -\frac{2}{3} \times -4)^3$	$b\left(y=\frac{1}{2}x-\frac{5}{6}\right)$
		6y = 3x - 5
° e	3y - 9 = -2x - 12 $+2x + 2x$	$\frac{-3 \times -3 \times}{-3 \times +6 \text{ y} = -5}$
	$\frac{3x + 3y - 9 = -12}{+9 + 9}$ $\frac{3x + 3y = -3}{+9 + 9}$	0R $3x - 6y = 5$
Now It's Your Turn	Rewrite each of the following linear equation	s in standard form.
	a. $y + \frac{3}{4} = 2(x-2)$	$b(y = -\frac{1}{5}x - 8)$ 5
	$\left(9 + \frac{3}{4} = 2x - 4\right) 4$	5y = -x - 40 $+x + x$
ř	4y + 3 = 8x - 16 -8x	x+5y=-40
9	$-8 \times +4 y +3 = -16$	
2.02.2.2.00.000	-8x + 4y = -19	

Summary:		

Learning Target: Today you will be able to DETERMINE WHETHER LINES ARE PARALLEL,

PERPENDICULAR, OR NEITHER

Question/Main Ideas: Notes:

Exploration of Lines Part 1

Graph both lines below on the same coordinate plane. Identify the slope and y-intercept for each. Then answer the following questions.

Equation 1: y = 2x + 3

Slope =
$$2$$
 y-intercept = 3
Equation 2: $y = 2x - 1$

1. What do you notice about the graphs of both equations? Talk about the similarities between the slopes and y-intercepts.

Concept: Parallel Lines

Lines that never intersect.

Slopes are equal

Example 1: Identifying Parallel Lines

Which line is parallel to the line through (13, 5) and (1, 20)?

Line 1: through (4, -2) and (-4, -12)

Line 2: through (-13, 14) and (7, -11)

$$\frac{20-5}{1-13} = \frac{15}{12} = -\frac{5}{4}$$

Line 1: Line 2:
$$\frac{-12+r2}{-4-4} = \frac{-10}{-8} = \frac{5}{4} = \frac{-11-14}{7--13} = \frac{-25}{20} = -\frac{5}{4}$$
 [Line 2]

Now It's Your Turn

Which line is parallel to the line through (12, -4) and (8, -7)?

$$\frac{-7 + +4}{8 - 12} = \frac{-3}{-4} = \frac{3}{4}$$

Line 2

3+r6 =
$$\frac{9}{12} = \frac{3}{4} = \frac{3+r9}{-2-6} = \frac{6}{-8} = -\frac{3}{4}$$

Exploration of Lines Graph both lines below on the same coordinate plane. Identify the slope and y-intercept Part 2 for each. Then answer the following questions. Equation 1: y = -3x + 4Slope = <u>-3</u> y-intercept = <u>4</u> Equation 2: $y = \frac{1}{3}x$ Slope = 1/3 y-intercept = O 1. What do you notice about the graphs of both equations? Talk about the similarities between the slopes and y-intercepts. · The lines are perpendicular · slopes - one neg. lone pos. "flipped" Lines that intersect at a 90° angle. Concept: Perpendicular Lines Slopes are opposite reciprocals $(\frac{2}{3}, -\frac{3}{a})$ Are the graphs of $\frac{4y}{4} = \frac{-5x}{4} + \frac{12}{4}$ and $y = \frac{4}{5}x - 8$ parallel, perpendicular, or neither? Example 2: Classifying Lines Perpendicular $y = -\frac{5}{4}x + 3$ (-5, 4) a. Are the graphs of $y = \frac{3}{4}x + 7$ and b. Are the graphs of 6y = -x + 6 and Now It's Your Turn $y = -\frac{1}{4}x + 6$ parallel, perpendicular, or 4x - 3y = 9 parallel, perpendicular, or neither? neither?

Question/Main Ideas:	Notes:
Review Concept: Parallel Lines and Perpendicular Lines	Parallel Lines: Lines with the Perpendicular Lines: Lines with opposite reciprocal slopes
Example 1: Writing an equation of a Parallel Line	Write an equation of a line that passes through (12, 5) and is parallel to the graph $y = \frac{2}{3}x - 1$ $5 = \frac{2}{3}(12) + b$ $m = \frac{2}{3}$ $5 = 8 + b$ $y = \frac{2}{3}x - 3$ $5 = 8 + b$ $3 = 5 + b$ $4 = 3 + b$ $5 = 4 + b$ 5
Now It's Your Turn	Write an equation of a line that passes through (-3, -1) and is parallel to the graph $y = 2x + 3$ $m = 2$ $X = -3$ $-1 = 3(-3) + b$ $Y = -x + 5$ $-1 = -6 + b$ $Y = -1$
Example 2: Writing an equation of a Perpendicular Line	Write an equation of a line that passes through (2, 4) and is perpendicular to the graph $y = \frac{1}{3}x - 1$ $4 = -3(a) + b$ $4 = -3(a) + b$ $4 = -6 + b$ $4 = -6$
Now It's Your Turn	Write an equation of a line that passes through (1, 8) and is perpendicular to the graph $y = 2x + 1$ $M = -\frac{1}{3}$ $X = 1, y = 8$ $8 = -\frac{1}{3}(1) + b$ $8 = -\frac{1}{3} + b$ $9 = -\frac{1}{3} \times + 8.5$ $8.5 = b$

Summary:			 	

Learning Target: Today you will be able to WRITE AN EQUATION OF A TREND LINE AND OF A LINE OF BEST FIT AS WELL AS USE A TREND LINE AND A LINE OF BEST FIT TO MAKE PREDICTIONS

Question/Main Ideas: Notes: A graph that relates two different sets of data Definition: Scatter by displaying them as ordered pairs Plot Positive Correlation Negative Correlation No Correlation Definition: Correlation

When y tends to increase as x increases, the two sets of data have a positive correlation.

When y tends to decrease as xincreases, the two sets of data have a negative correlation.

When x and y are not related, the two sets of data have no correlation.

Example 1: Writing an Equation of a Trend Line

Make a scatter plot of the data below. Draw in your trend line and find the equation of that trend line. Then use the trend line to approximate the weight of a 7-month-old panda. Panda Weight

Weight (lbs)
2.5
7.6
12.5
17.1
24.3
37.9
49.2

(2, 7.6) (3, 12.5)

7.6 = 4.9(2)+b | y=4.9x-2.2

months 10 Age (Months)

	-a.a=b	About	3 a	165	at	7	mor
Summary:							

*

Learning Target: Today you will be able to GRAPH AN ABSOLUTE VALUE FUNCTION AND TRANSLATE THE GRAPH OF AN ABSOLUTE VALUE FUNCTION

Question/Main Ideas:

Notes:

Definition: Absolute
Value Function

Parent Function: y = |x|

Teacher note: Add this before example 3-not/

at beginning.

y=a|x-h|+k

a = "slope" h = horizontal shift

k = vertical shift

Definition: Translation

A shift of the graph horizontally (h), vertically (k) or a combination of both.

(h,k)=

Example 1: Describing Translations

Below are the graphs of y = |x| and y = |x| - 2. How are the graphs related?

Same v-shape
The second
graph is shifted
down a.

Now It's Your Turn

How is the graph below related to the graph of y = |x|? What is the equation of this

graph?

The graph is shifted up 4

Concept: Translating
Absolute Value Graphs
Vertically

The number added or subtracted outside the absolute value shifts the graph up or down respectively.

Example 2: More Describing Translations

Below are the graphs of y = |x| and y = |x-2| drawn on the same graph and y = |x| and y = |x+2| drawn on the same graph. How are the graphs of y = |x-2| and y = |x+2| related to y = |x|? Graphs are shifted horizontally

|x+a|-left a |x-a|-right a "backwards"

Concept: Translating Absolute Value Graphs Horizontally The number added or subtracted inside the absolute value shifts the graph left(+) or right(-). Think opposite.

Example 3: Graphing a Vertical Translation

Graph y = |x-3|+2

right 3

left 1

Example 4: Writing Equations of Absolute Value Equations

What is an equation for each translation of y = |x|?

- a. 11 units up and 9 units right
- y = |x 9| + 11

b. 14 units down and 4 units left

Now It's Your Turn

What is an equation for each translation of y = |x|?

- a. 8 units up and 6 units left
- y= 1x+61+8

b. 5 units down and 8 units right