Name	
Doto	Class Panied

Learning Target: Today you will be able to SIMPLIFY RATIONAL EXPRESSIONS AND IDENTIFY EXCLUDED VALUES

Questions/Main Ideas:	Notes:		
Definition: Rational			
Expressions	An expression of the form polynomial		
Example 1: Evaluating	Evaluate the following for the given value.		
Rational Expressions	a. $\frac{x^2+3}{x-2}$ for $x=2$ $\frac{(a)^3+3}{a-a}=\frac{7}{0}$ b. $\frac{5x-6}{3x+9}$ for $x=-3$ $\frac{5(-3)-6}{3(-3)+9}$		
	undefined -21 o undefined		
Definition: Excluded Values	A value for a variable for which a rational expression is undefined.		
Steps to Simplifying a	Factor the numerator and denominator		
Rational Expression	Divide out any common factors		
	Find the excluded values using factored denom.		
4 ° « 5	Write simplified answer with excluded values		
Example 2: Simplifying a Rational Expression	Simplify the following. State any excluded values.		
**************************************	a. $\frac{x-1}{5x-5} = \frac{x}{5(x+1)} = \frac{1}{5} (x \pm 1)$ b. $\frac{18d^2}{4d+8} = \frac{18d^2}{4(d+2)} = \frac{9d^2}{4(d+2)}$		
* 1 2 1 1 1 1 1 1 1 1	$X=1 \neq 0$ $X \neq 1 \neq 0$ Excluded $d \neq -2$ $a(d+2)$ $a(d+2)$		
Now It's Your Turn	Simplify the following. State any excluded values.		
	a. $\frac{2n-3}{6n-9} = \frac{2n-3}{3(2n-3)} = \frac{1}{3}$ b. $\frac{26c^3+91c}{2c^2+7} = \frac{13c(2c^2+7)}{2c^2+7}$		
	$\frac{2n-3 \pm 0}{2n \pm 3}$ $\frac{1}{3}$, $n \pm 1.5$ $\frac{3c^2 \pm 7}{c^2 \pm -7}$ [13C, none		

Example 3: Simplifying Simplify the following. State any excluded values. a Rational Expression a. $\frac{3x-6}{x^2+x-6} = \frac{3(x-a)}{(x+3)(x-a)} = \frac{3}{x+3}$ b. $\frac{a^2-3a+2}{3a-3} = \frac{(a-a)(a-1)}{3(a-1)} = \frac{a-2}{3}$ Containing a Trinomial $X+3 \neq 0$ $X \neq -3$ X+2 $X+3 \neq 0$ X & 2 Now It's Your Turn Simplify the following. State any excluded values. a. $\frac{6z+12}{2z^2+7z+6} = \frac{6(z+a)}{(2z+3)(z+a)} = \frac{6}{2z+3}$ b. $\frac{c^2-c-6}{c^2+5c+6} = \frac{(c-3)(c+a)}{(c+3)(c+a)}$ X-3 are opposites. Factor out -1 to make them match Concept: Opposite **Factors** Example 4: Recognizing Simplify the following. State any excluded values. b. Your Turn: $\frac{y^2 - 16}{4 - y} = \frac{(y - 4)(y + 4)}{1(y - 4)}$ $y - 4 \neq 0$ $y \neq 4$ $y \neq 4$ $y \neq 4$ Opposite Factors a. $\frac{4-x^2}{7x-14} = \frac{-1(x^2-4)}{7x-14}$ = -(x-a)(x+a) = -(x-a)(x+a) = -(x+a) = -(x+a) = -(x+a) = -(x+a)

Summary:

Learning Target: Today you will be able to MULTIPLY RATIONAL EXPRESSIONS

Questions/Main Ideas:	Notes:		
Example 1: Multiplying Rational Expressions	Find the product. State any excluded values. a. $\frac{6}{a^2} \cdot \frac{-2}{a^3} = \frac{-10}{a^5}$ $a \neq 0$ b. $\frac{x-7}{x} \cdot \frac{x-5}{x+3} = \frac{(x-7)(x-5)}{x(x+3)}$		
	X ± 0, - 3 X + 3 ± 0 X F - 3		
Now It's Your Turn	Find the product. State any excluded values.		
	a. $\frac{5}{y} \cdot \frac{3}{y^3} = \frac{15}{y^4} \cdot y + 0$ b. $\frac{x}{x-2} \cdot \frac{x+1}{x-3} = \frac{x(x+1)}{(x-a)(x-3)}$ $x = 2 + 0$ $x + 2$ $x - 3 = 0$ $x = 3$		
Note: Excluded Values or Not	Only include excluded values if the problem specifically asks		
Concept: Cross Cancelling	$\frac{5}{7} \cdot \frac{14}{55} = \frac{70}{385} = \frac{2}{11} \text{OR} \frac{5}{7} \cdot \frac{14}{55} = \frac{2}{11}$ Any matching factors in numerator and denomination can cancel		
Example 2: Using Factoring	Find the product. $\frac{x+5}{7x-21} \cdot \frac{14x}{x^2+3x-10} = \frac{x+5}{11x-3} \cdot \frac{14x}{(x+5)(x-a)}$ $= \frac{x}{(x-3)(x-a)}$		

Now It's Your Turn

Find the product.

$$\frac{3x^2}{x+2} \cdot \frac{x^2+3x+2}{x} = \frac{3x^{\frac{3}{4}}}{x+2} \cdot \frac{(x+2)(x+1)}{x}$$

$$= \frac{3 \times (x+1)}{x}$$

Example 3: Multiplying a Rational Expression by a Polynomial

Find the product.

$$\frac{2m+5}{3m-6} \cdot (m^2+m-6) = \frac{2m+5}{3(m-3)} = \frac{(m+3)(m-3)}{1}$$

$$= (2m+5)(m+3)$$
3

Now It's Your Turn

Find the product.

a.
$$\frac{2x-14}{4x-6} \cdot (6x^2-13x+6)$$
b. $\frac{x^2+2x+1}{x-1} \cdot (x^2+2x-3)$

$$\frac{2(x-7)}{2(2x-3)} \cdot \frac{(3x-2)(2x-3)}{2(2x-3)} \cdot \frac{(x+1)(x+1)}{2(2x-3)} \cdot \frac{(x+3)(x-1)}{2(2x-3)}$$

$$\frac{(x-7)}{(3x-2)} \cdot \frac{(x+1)(x+1)}{2(2x-3)} \cdot \frac{(x+1)(x+3)}{2(2x-3)}$$

Summary: _____

Learning Target: Today you will be able to DIVIDE RATIONAL EXPRESSIONS AND SIMPLIFY COMPLEX FRACTIONS

Questions/Main Ideas:	Notes:
Review: Dividing Fractions	Multiply by the reciprocal of and fraction. $\frac{3}{4} \div \frac{1}{8} = \frac{3}{4} \cdot \frac{8}{1} = 6$
Example 1: Dividing Rational Expressions	Find the quotient. $ \frac{x^{2}-25}{4x+28} : \frac{x-5}{x^{2}+9x+14} = \frac{x^{2}-25}{4x+28} \cdot \frac{x^{3}+9x+14}{x-5} $ $ = \frac{(x-8)(x+5)}{4(x+7)} \cdot \frac{(x+7)(x+2)}{x-5} $ $ = \frac{(x+5)(x+2)}{4} $
Now It's Your Turn	Find the quotient. a. $\frac{x}{x+y} \div \frac{xy}{x+y} = \frac{x}{x+y}$ b. $\frac{4k+8}{6k-10} \div \frac{k^2+6k+8}{9k-15}$ $\frac{3(3k-5)}{2}$ $\frac{3(3k-5)}{2}$ $\frac{6}{2}$
Concept: Reciprocal of a Polynomial	$x^2+6x+3=x^2+6x+3 \longrightarrow 1$

Example 2: Dividing a Rational Expression by a Polynomial

Find the quotient.

a.
$$\frac{3x^{2}-12x}{5x} \div (x^{2}-3x-4)$$

b. Your Turn: $\frac{z^{2}-2z+1}{z^{2}+2} \div (z-1)$

$$\frac{3x(x-4)}{5x} = \frac{1}{x^{2}-3x-4}$$

$$\frac{3x(x-4)}{5x} = \frac{1}{x^{2}-3x-4}$$

$$\frac{3x(x-4)}{5x} = \frac{1}{x^{2}+3} = \frac{1}{z^{2}+3}$$

$$\frac{3}{5(x+1)}$$

Definition: Complex Fraction

A fraction that contains one or more fractions in its numerator, denominator, or both.

$$\frac{9}{b} = \frac{9}{b} \cdot \frac{c}{d} = \frac{9}{b} \cdot \frac{d}{c}$$

Example 3: Simplifying a Complex Fraction

Simplify the following.

a.
$$\frac{\frac{1}{x-2}}{\frac{x+3}{x^2-4}}$$
b. Your Turn:
$$\frac{\frac{1}{q+4}}{\frac{2q^2}{2q+8}}$$

$$\frac{1}{x-2} \cdot \frac{x+3}{x^2-4}$$

$$\frac{1}{x-2} \cdot \frac{x+3}{x^2-4}$$

$$\frac{1}{q+4} \cdot \frac{2q^2}{2q+8}$$

$$\frac{1}{q+4} \cdot \frac{2q^2}{2q+8}$$

$$\frac{1}{x+3} \cdot \frac{x+3}{x+3}$$

$$\frac{1}{q+4} \cdot \frac{x+3}{x+3}$$

$$\frac{1}{q+4} \cdot \frac{x+3}{x+3}$$

$$\frac{1}{q+4} \cdot \frac{x+3}{x+3}$$

Summary: ____

Learning Target: Today you will be able to DIVIDE POLYNOMIALS BY A MONOMIAL AND USING LONG DIVISION

Questions/Main Ideas:	Notes:			
Example 1: Dividing by a Monomial	What is $(9x^3 - 6x^2 + 15x) \div 3x^2$? $\frac{9x^3}{3x^2} - \frac{6x^2}{3x^2} + \frac{15x}{3x^2} = 3x - 2 + \frac{5}{x}$			
Now It's Your Turn	Divide the following. a. $(4a^3 + 10a^2 + 3a) \div 2a^2$ b. $(12c^4 + 18c^2 + 9c) \div 6c$ $\frac{4a^3}{2a^3} + \frac{10a^3}{2a^3} + \frac{3a}{2a^2}$ $\frac{12c^4}{6c} + \frac{18c^3}{6c} + \frac{9c}{6c}$ $2a + 5 + \frac{3}{2a}$ $2c^3 + 3c + \frac{3}{2}$			
Concept: Writing your Answer when Dividing by a Binomial	Quotient + remainder divisor			
Example 2: Dividing by a Binomial	Divide the following. $(3d^{2}-4d+13)\div(d+3)$ $3d-13$ $d+3 $			
.0 -9 	$3d-13+\frac{5a}{d+3}$ $am-3$			

Concept: Zero Terms and Reordering Terms

Exponents: Order from greatest to least

Missing exponents: need to use a zero

Example 3: Dividing
Polynomials with Zero
Terms and Reordering
Terms

a. What is $(18z^3 - 8z + 2) \div (3z - 1)$?

b. What is $(-10x-1+4x^2) \div (-3+2x)$?

$$\begin{array}{r}
2x - 2 \\
4x^{2} - 10x - 1 \\
-4x^{2} + 6x \\
-4x - 1 \\
44x + 6
\end{array}$$

$$2x-2-\frac{7}{2x-3}$$

Now It's Your Turn

a. What is $(q^4 + q^2 + q - 3) \div (q - 1)$?

b. What is $(-7-10y+6y^2) \div (4+3y)$?

$$3y+4 | 6y^{2}-10y-7$$
 $-6y^{2} + 8y$

$$-18y-7$$
 $+18y+2y$

$$17$$

$$3y-6+\frac{17}{3y+4}$$

Summary:			
\$ 5	79 (I-c) 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (

Learning Target: Today you will be able to ADD OR SUBTRACT RATIONAL EXPRESSIONS INCLUDING FINDING A COMMON DENOMINATOR

Questions/Main Ideas:	Notes:			
Review: Adding or Subtracting Fractions with Like Denominators	Add or subtract the numerators. Denominator stays the same			
Example 1: Adding or Subtracting Expressions with Like Denominators	Find the sum. a. $\frac{3x}{x-2} + \frac{x}{x-2} = \frac{3x+x}{x-2}$	Find the difference. b. $\frac{7x+5}{3x^2-x-2} - \frac{4x+3}{3x^2-x-2}$		
	$= \frac{4 \times}{4 \times 3}$	$\frac{(7x+5)-(4x+3)}{3x^2-x-2}$ $\frac{3x+2}{(3x+3)(x-1)^2} \frac{1}{x-1}$		
Now It's Your Turn	Find the sum.	Find the difference.		
	a. $\frac{2a}{3a-4} + \frac{3a}{3a-4} = \frac{2a+3a}{3a-4}$ $= \frac{5a}{3a-4}$	b. $\frac{7q-3}{q^2-4} - \frac{6q-5}{q^2-4}$ watch out		
	3a-4	$\frac{q+a}{(q-a)(q+a)} = \frac{1}{q-a}$		

Review: Adding or Subtracting Fractions with Unlike Denominators Find the least common denominator (LCD).

Multiply the numerator by missing factors to rewrite over LCD.

Concept: Finding the LCD of Monomials

Write denominators as products of prime factors. List each factor the greatest times it appears.

Example 2: Adding Expressions with Different Denominators	What is the sum of $\frac{5}{6x} + \frac{3}{2x^2}$? LCD: $6x = \lambda \cdot 3 \cdot x$ $\frac{5 \cdot x}{6x^2} + \frac{3 \cdot 3}{6x^2}$ $\frac{5 \cdot x}{6x^2} + \frac{3 \cdot 3}{6x^2}$ $\frac{5 \cdot x + 9}{6x^2}$ $\frac{6x}{6x^2}$
Now It's Your Turn	What is the sum of $\frac{3}{7y^4} + \frac{2}{3y^2}$? LCD: $7y^4 = 7 \cdot y \cdot y \cdot y \cdot y$
	$\frac{3 \cdot 3}{2 \cdot 3 \cdot 4} + \frac{2 \cdot 7 \cdot 4}{2 \cdot 4} + \frac{3 \cdot 7 \cdot 4}{2 \cdot 4} $
	9+14y2 21y4
Concept: Finding the LCD of Binomials	Denominator must be in factored form. Pull out all unique binomials. If repeats, include o
Example 3: Subtracting Expressions with Different Denominators	What is the difference of $\frac{3}{d-1} - \frac{2}{d+2}$? LCD: $d-1$ $d+a = \frac{3(d+a)}{(d-1)(d+a)} + \frac{-2(d-1)}{(d-1)(d+2)} = \frac{3d+6}{(d-1)(d+2)} + \frac{-2d+2}{(d-1)(d+2)} = \frac{d+8}{(d-1)(d+2)}$
	$= \frac{d+8}{(d-1)(d+2)}$
Now It's Your Turn	What is the difference of $\frac{c}{3c-1} - \frac{4}{c-2}$? LCD: $3c-1 > (3c-1)(c-2)$
	$\frac{C(C-2)}{(3C-1)(c-2)} + \frac{-4(3C-1)}{(3C-1)(c-2)} = \frac{C^2-2C-12C+4}{2} = \frac{1}{2}$
ı	c 2-14c+4
, k e s	

Summary: ____

Learning Target: Today you will be able to SOLVE RATIONAL EQUATIONS

Questions/Main Ideas:	Notes:		
Review: Fraction Busters	Multiply the ENTIRE Equation by the LCD $la\left(\frac{1}{2}x + \frac{5}{6} = \frac{3}{4}\right) \Rightarrow 6x + 10 = 9$		
Example 1: Solving Equations with Rational Expressions	Solve the equation. Check your solution. LCD: $1a = a \cdot a \cdot 3$ $2x = a \cdot x$ $3x =$		
Now It's Your Turn	Solve each equation. a. $\left(\frac{1}{3} + \frac{3}{x} = \frac{21}{x}\right)^{3x}$ b. $\left(\frac{4}{7x} + \frac{1}{3} = \frac{7}{3x}\right)^{21x}$ $x + 9 = 63$ $12 + 7x = 49$		
,,	X = 54 $7x = 37$ $X = 5.3$		
Example 2: Solving by Factoring	Solve the equation. $ \begin{array}{c} \text{LCD: } x = x \\ \text{X}^2 \left(1 - \frac{1}{x} = \frac{12}{x^2}\right) \\ \text{X} = 4, -3 \end{array} $		
	$x^{2}-x=12$ $x^{2}-x-12=0$ (x-4)(x+3)=0		

Now It's Your Turn

Solve each equation.

$$d = \frac{6}{y} = \frac{6}{y^{2}} - 6$$

$$d = \frac{6}{y$$

c. How can you tell that the rational equation $\frac{2}{x^2} = -1$ has no solutions just by looking at the equation?

$$x^{a} \ge 0$$
 $\frac{a}{pos} \ne -1$

Example 3: Solving a Work Problem

Amy can paint a loft apartment in 7 hours. Jeremy can paint a loft apartment of the same size in 9 hours. If they work together, how long will it take them to paint a third loft apartment of the same size?

$$\left(\frac{1}{7} + \frac{1}{9} = \frac{1}{h}\right)^{63h}$$
 16h = 63
h = 3.94 hrs

Now It's Your Turn

One hose can fill a pool in 12 hours. Another hose can fill the same pool in 8 hours. How long will it take for both hoses to fill the pool together?

$$\left(\frac{1}{12} + \frac{1}{8} = \frac{1}{h}\right)^{96h}$$
 doh = 96
 $h = 4.8 \, \text{hrs}$

Summary: _	

Learning Target: Today you will be able to SOLVE RATIONAL PROPORTIONS AND CHECK FOR EXTRANEOUS SOLUTIONS

Questions/Main Ideas:	Notes:		
Concept: Using Cross- Products	some rational equations are proportions. You can solve them by using cross products.		
Example 1: Solving a Rational Proportions	What is the solution of $\frac{4}{x+2} > \frac{3}{x+1}$?		
	$4x + 4 = 3x + 6 \qquad X = a$		
	X+4=6		
Now It's Your Turn	Find the solution(s) of each equation. $(x-7)(x+3)=6$		
	a. $\frac{3}{b+2} \frac{5}{b-2}$ 3b-6=5b+10 (x-7)(x+3)=0 (x-7)(x+3)=0 (x-7)(x+3)=0 (x-7)(x+3)=0		
	36-6=56+10		
	-6 = ab + 10 -16 = ab -8 = b $c^2 - 4c - 21 = 0$		
Review: Extraneous Solutions	A solution that makes the denominator zero. CHECK YOUR SOLUTIONS!		
Example 2: Checking to	Solve each equation. Check your solution(s).		
Find an Extraneous Solution	a. $\frac{6}{x+5} = \frac{x+3}{x+5}$ b. Your Turn: $\frac{x-4}{x^2-4} = \frac{-2}{x-2}$		
	$6x+30 = x^{2}+8x+15$ $-2x^{2}+8 = x^{2}-6x+8$		
	$0 = x^2 + \partial x - 15$ $0 = 3x^2 - 6x$		
	0 = (x+5)(x-3) $0 = 3x(x-2)X = -x_{1}3 X = 3 X = 0$		

Summary:	
----------	--

Name	
Date	Class Period

Learning Target: Today you will be able to WRITE AND GRAPH EQUATIONS FOR INVERSE VARIATIONS AND COMPARE DIRECT AND INVERSE VARIATIONS

Questions/Main Ideas:	Notes:
Definition: Inverse Variation	An equation of the form $xy=k$ OR $y=\frac{k}{x}$, where $k\neq 0$
Definition: Constant of Variation for an Inverse Variation	The constant of variation is k, the product x.y for an ordered pair (x,y) that satisfies the inverse variation.
Example 1: Writing and Equation Given a Point	Suppose y varies inversely with x, and y = 8 and x = 3. What is an equation for the inverse variation?
Now It's Your Turn	Suppose y varies inversely with x, and y = 9 and x = 6. What is an equation for the inverse variation?
Concept: Inverse Variation Graphs	*Each graph has two unconnected parts. *When k>0 the graph is in the 1st 13rd Quadrants *When k40 the graph is in the 2nd/4th quadrants
Example 2: Graphing an Inverse Variation	Graph $y = \frac{8}{x}$ using the following table.

0

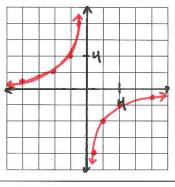
1

-1

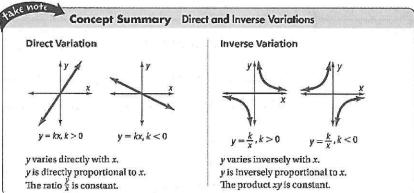
-8

-4

-2


2

4


Now It's Your Turn

Graph $y = \frac{-8}{x}$ using the following table.

×	-8	-4	-2	-1	0	1	2	4	8
У	1	a	4	8	und.	-8	-4	-2	-1

Concept: Direct Versus
Inverse Variation

Example 4: Determining Direct or Inverse Variation Do the data in each table represet a direct variation or an inverse variation? For each table, write an equation to model the data.

a. x y 3 -15 4 -20

b. x y 2 9

Inverse Variation xy = 18

Now It's Your Turn

Do the data in each table represet a direct variation or an inverse variation? For each table, write an equation to model the data.

Direct Variation
y = -3x

Inverse	variation			
xy =	-48			

Summary:	
----------	--

Learning Target: Today you will be able to GRAPH RATIONAL FUNCTIONS

Caramala	4 .	Talandificia

Questions/Main Ideas:

Notes:

Example 1: Identifying **Excluded Values**

What is the excluded value for each function?

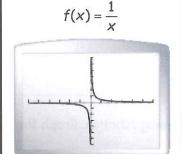
a.
$$f(x) = \frac{5}{x-2}$$
 $X - 2 = 0$

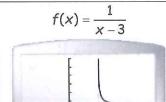
$$X \neq a$$

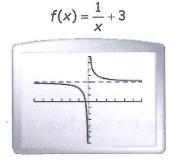
b.
$$y = \frac{-3}{x+8}$$
 $X + 8 = 0$

Now It's Your Turn

What is the excluded value for each function?


a.
$$f(x) = \frac{1}{x}$$


b.
$$f(x) = \frac{1}{x-3}$$


c.
$$f(x) = \frac{1}{x} + 3$$

$$X \neq 0$$

Concept: Graphing Rational Functions Use the graphs below to answer the given questions.

a. What happens on the graph at the excluded values (see the above "Now It's Your Turn" for the excluded values for each function)?

A vertical line that the graph doesn't

b. What does the minus 3 in the denominator do to the graph?

shifts it 3 units to the right

c. What does the plus 3 after the fraction do to the graph?

shifts it up 3 units

	Aline is an asymptote of a graph if the graph		
Definition Asymptote	gets closer to the line but never crosses it.		
Concept: Identifying Asymptotes	$y = \frac{q}{x-b} + c$ Vertical Asymptote: $x = b$		
	Horizontal Asymptote:		
y .	y=c		
Steps to Graphing	Find the vertical and horizontal		
	asymptotes.		
	a > 0 a 40		
	upper right upper left		
	lower left lower right		
Example 2: Identifying	Find the asymptotes for the following function. Graph the function.		
Asymptotes	$f(x) = \frac{3}{x-1} - 2$		
	Vertical: X = 1		
	Vertical: X = 1 Horizontal: y = -2		
Now It's Your Turn	Find the asymptotes for the following function. Graph the function.		
	$f(x) = \frac{-1}{x+3} - 4$		
9 * Ex. =	$f(x) = \frac{-1}{x+3} - 4 \qquad a = 0$ Vertical: $x = -3$ Horizontal: $y = -4$		
	Horizontal: y = -4		

Summary: ____