Name _____

Learning Target: Today you will be able to USE THE PYTHAGOREAN THEOREM TO SOLVE FOR MISSING SIDES OF A RIGHT TRIANGLE AND IDENTIFY TYPES OF TRIANGLE

Question/Main Ideas:

Notes:

The Pythagorean Theorem

$$(leg)^{2} + (leg)^{2} = (hyp)^{2}$$

$$a^{2} + b^{2} = c^{2} \qquad (a)$$

hypotenuse (c) leg(b)

Example 1: Using the Pythagorean Theorem

Find the length of the missing side.

α.

b. What is the length of the missing leg of a right triangle with hypotenuse of 12 cm and other side length of 5 cm?

$$a = ? b = 5 c = 12$$

$$a^{2} + 5^{2} = 12^{2}$$

$$a^{2} + 25 = 144$$

$$-25 - 25$$

$$\sqrt{a^{2}} = \sqrt{119}$$

$$a \approx 10.9 cm$$

Now It's Your Turn

Find the length of the missing side.

36+36=62

a.

b. What is the length of the hypotenuse of a right triangle with legs of lengths 9 ft and 12 ft?

$$a = 9 b = 1a c = ?$$
 $9^{a} + 1a^{a} = c^{a}$
 $81 + 144 = c^{a}$
 $aa5 = c^{a}$
 $15 = c$

Table Exploration:	a	Ь	С	$a^2 + b^2$	<, >, =	c ²	Type of Triangle		
Use the given	3	4	5	25	=	25	Right		
triangles to complete the table	2	7	8	53	<	64	Obtuse		
	5	9	10	106	>	100	Acute		
	8	10	11	164	7	121	Acute		
	3	8	9	73	4	81	Obtuse		
Converse of the Pythagorean Theorem	Acute	Triangle	e: (2+6	2762	Zei Zei (File)	1		
, ,go, ouiioo, o	Obtus	e Triang	ile:	a^2+k	,2 4 6 2	5 9			
	Right '	Triangle	:	$a^a + b$	a= ca				
Example 2: Identifying Triangles	Identi	fy whet	her the	e given side	lengths repres	ent an acute	e, an obtuse, or a right triangle		
		24 in, 2		Obto	ise b	o. 8 ft, 15 ft 4 b	, 16 ft Acute		
	6a+24a=25a					82+152=162			
	36 + 576 = 625					64 + ō	125 = 256		
	13	612	468	25		289>256			
Now It's Your Turn	Identify whether the given side lengths represent an acute, an obtuse, or a right triangle								
	a. 10 c	m, 24 cr <mark>b</mark>	n, 26 cr	m Rig	ght b	o. 4 yd, 8 yd,	10 yd Obtuse		
	10	+ 6	142=	= 26ª		42+	8 2 = 10 2		
	10	0 +	576	= 676		16+	-64=100		
		6.	76 =	676		8	0-100		
2	c. If a, b, and c satisfy the equation $a^2 + b^2 = c^2$, are 2a, 2b, and 2c also possible sides lengths of a right triangle? How do you know?								
						V			
		(20	1) 3 +	- (ab) a	=(2c)2	les	, multiplication		
	E (0°)				=(ac) 2 =4c2		perty of		

Summary:		ŭ		

Name _____ Class Period _____

Learning Target: Today you will be able to SIMPLIFY RADICALS INVOLVING PRODUCTS OF NUMBERS AND VARIABLES

Question/Main Ideas:	Notes:
Ages How with Tracas.	140163.
Example 1: Multiplying Radicals	Multiply the radicals and then simplify. $(5.4)\sqrt{a \cdot 3a}$
	a. $\sqrt{12} \cdot \sqrt{3} = \sqrt{12 \cdot 3}$ b. $5\sqrt{2} \cdot 4\sqrt{32}$ $20\sqrt{64}$ $20(8)$
	= 6
Steps to Simplifying Square Roots	Factor tree the number under the radical
Oqual & Roots	For each factor pair, pull one number out in front of the radical
	Leave all non-paired factors under the radical
	Multiply any numbers outside together and for any numbers inside together.
Example 2: Removing Perfect Square	Simplify the following.
Factors	a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{63}$ a. $\sqrt{63}$ a. $\sqrt{63}$ a. $\sqrt{9}$ a. $\sqrt{160}$ b. $\sqrt{63}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ a. $\sqrt{160}$ a. $\sqrt{160}$ b. $\sqrt{160}$ b. $\sqrt{160}$ b. $\sqrt{160}$ c. $\sqrt{160}$ b. $\sqrt{160}$ c. $\sqrt{160}$ c. \sqrt
	2 10
Now It's Your Turn	Simplify the following.
	a. $\sqrt{72}$ a.3 $\sqrt{3}$ b. $\sqrt{12}$ a $\sqrt{3}$ 6 $\sqrt{3}$ 6 $\sqrt{3}$
	33

Simplifying Square Roots with Variables

Same as number factors. Pull out one variable for every pair.

Example 3: Removing Variable Factors

Simplify the following.

Now It's Your Turn

Simplify the following.

108

Example 4: Writing a Radical Expression

A rectangular door in a museum is three times as tall as it is wide. What is the simplified expression for the maximum length of a painting that fits through the door?

$$a^{3} + b^{3} = c^{2}$$
 $w^{3} + (3w)^{3} = c^{2}$
 $w^{3} + 9w^{3} = c^{2}$
 $\sqrt{10w^{2}} = \sqrt{c^{2}}$
 $\sqrt{10w^{3}} = \sqrt{c^{2}}$

b. $3\sqrt{6} \cdot \sqrt{18}$

Summary:	
----------	--

Name _____ Class Period _____

Learning Target: Today you will be able to SIMPLIFY RADICALS INVOLVING QUOTIENTS INCLUDING RATIONALIZING THE DENOMINATOR

Question/Main Ideas:	Notes:
Example 1: Simplifying Fractions within Radicals	Simplify the following. a. $\sqrt{\frac{64}{49}} = \frac{\sqrt{64}}{\sqrt{49}} = \frac{8}{7}$ b. $\sqrt{\frac{8x^3}{50x}} = \sqrt{\frac{4x^3}{25}} = \frac{2x}{5}$
Now It's Your Turn	Simplify the following.
	a. $\sqrt{\frac{144}{9}} = \sqrt{16}$ $= 4$ b. $\sqrt{\frac{36a}{4a^3}} = \sqrt{\frac{9}{a^2}}$ c. $\sqrt{\frac{25y^3}{z^2}} = \frac{5y\sqrt{y}}{z}$ $= \frac{3}{a}$
Definition: Rationalize the Denominator	Radicals should not be left in the denominator. 50, multiply the numerator and the denominator by the original denominator
Example 2: Rationalizing Denominators	Simplify the following. a. $\frac{\sqrt{3}}{\sqrt{7}} \cdot \frac{\sqrt{1}}{\sqrt{7}} = \frac{\sqrt{3}}{7}$ b. $\frac{\sqrt{7}}{\sqrt{8n}} \cdot \frac{\sqrt{8n}}{\sqrt{8n}} = \frac{\sqrt{56n}}{8n} = \frac{2}{\sqrt{14n}}$ $\frac{2\sqrt{14n}}{8n} = \frac{\sqrt{14n}}{4n}$
Now It's Your Turn	Simplify the following. a. $\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{6}}{\sqrt{9}} = \frac{\sqrt{6}}{3}$ b. $\frac{\sqrt{5}}{\sqrt{18m}} \cdot \frac{\sqrt{18m}}{\sqrt{18m}} = \frac{\sqrt{90m}}{18m} = \sqrt{\frac{18m}{6m}}$

Summary:

2 a

Learning Target: Today you will be able to SIMPLIFY SUMS, DIFFERENCES, AND PRODUCTS OF RADICAL EXPRESSIONS

Question/Main Ideas:	Notes:							
Definition: Like Radicals	when simplified, the expressions under the radicals match							
Definition: Unlike Radicals	When simplified, the expressions under the radicals do not match							
Example 1: Combining Like Radicals	Simplify the following. a. $6\sqrt{11} + 9\sqrt{11} = 15\sqrt{11}$ b. $1\sqrt{3} - 5\sqrt{3} = -4\sqrt{3}$ Add coefficients $1-5=-4$							
Now It's Your Turn	Simplify the following. a. $7\sqrt{2}-8\sqrt{2}=-1\sqrt{3}$ b. $5\sqrt{5}+2\sqrt{5}=7\sqrt{5}$ $=-\sqrt{3}$							
Example 2: Simplifying to Combine Like Terms	Simplify the following. a. $5\sqrt{3} - \sqrt{12} = 5\sqrt{3} - 2\sqrt{3}$ $= 3\sqrt{3}$							
Now It's Your Turn	Simplify the following. a. $4\sqrt{7} + 2\sqrt{28}$ b. $5\sqrt{32} - 4\sqrt{18}$ $4\sqrt{7} + 2 \cdot 2\sqrt{7}$ $4\sqrt{7} + 2 \cdot 2\sqrt{7}$ $4\sqrt{7} + 4\sqrt{7}$ $4\sqrt$							

Example 3: Multiplying Radical Expressions

Simplify the following.

a.
$$\sqrt{10}(\sqrt{6}+3)$$

 $\sqrt{10} \cdot \sqrt{6} + \sqrt{10} \cdot 3$
 $\sqrt{60} + 3\sqrt{10}$

b.
$$(\sqrt{6} - 2\sqrt{3})(\sqrt{6} + \sqrt{3})$$

$$\sqrt{6} \cdot \sqrt{6} + \sqrt{6} \cdot \sqrt{3} + -2\sqrt{3} \cdot \sqrt{6} + -2\sqrt{3} \cdot \sqrt{3}$$

$$\sqrt{36} + \sqrt{18} - 2\sqrt{18} - 2\sqrt{9}$$

$$6 + 3\sqrt{2} - 6\sqrt{2} - 2 \cdot 3$$

$$6 - 3\sqrt{2} - 6$$

$$- 3\sqrt{2}$$

Now It's Your Turn

Simplify the following.

a.
$$\sqrt{2}(\sqrt{6}+5)$$
 $\sqrt{2}(\sqrt{6}+5)$
 $\sqrt{12} \cdot \sqrt{13} \cdot \sqrt{13} + 5\sqrt{2}$
 $\sqrt{13} + 5\sqrt{2}$

b.
$$(\sqrt{11}-2)^2$$

$$(\sqrt{11}-a)(\sqrt{11}-a)$$

$$\sqrt{11}+\sqrt{11}+\sqrt{11}-a+\sqrt{11}-a+-a-a$$

$$11-a\sqrt{11}-a\sqrt{11}+4$$

$$15-4\sqrt{11}$$

c.
$$(\sqrt{6}-2\sqrt{3})(4\sqrt{3}+3\sqrt{6})$$

$$\sqrt{6} \cdot 4\sqrt{3} + \sqrt{6} \cdot 3\sqrt{6} + -2\sqrt{3} \cdot 4\sqrt{3} + -2\sqrt{3} \cdot 3\sqrt{6}$$

$$4\sqrt{18} + 3\sqrt{36} - 8\sqrt{9} - 6\sqrt{18}$$

$$12\sqrt{2} + 3 \cdot 6 - 8 \cdot 3 - 18\sqrt{2}$$

$$12\sqrt{2} + 18 - 24 - 18\sqrt{2}$$

$$-6 - 6\sqrt{2}$$

Summary:				
	Se 52	1	4	
M				

10-3 Day 2: Operations with Radical Expressions

Name _____ Class Period _____

Learning Target: Today you will be able to QUOTIENTS OF RADICAL EXPRESSIONS

Question/Main Ideas:	Notes:
Concept: Multiplying Conjugates	Simplify $(4-\sqrt{8})(4+\sqrt{8})$ b. What do you notice about the original problem? How does that impact the answer? Same terms-one is (+) one is (+). No radicals left.
Definition: Conjugates	The sum and difference of the same two terms. (i.e. $\sqrt{7}+\sqrt{3}$ and $\sqrt{7}-\sqrt{3}$)
Example 1: Rationalizing a Denominator using Conjugates	Simplify the following. Now It's Your Turn: Simplify a. $\frac{10}{\sqrt{7}-\sqrt{2}} \cdot \frac{17+\sqrt{2}}{\sqrt{7}+\sqrt{2}}$ b. $\frac{-3}{\sqrt{10}+\sqrt{5}} \cdot \frac{10-\sqrt{5}}{\sqrt{10}-\sqrt{5}} = \frac{3(\sqrt{10}-\sqrt{5})^2-(\sqrt{15})$
Example 2: Solving a Proportion Involving Radicals	Solve the following for w. $ \frac{1+\sqrt{5}}{2} \frac{4}{w} = \frac{(1+\sqrt{5})\omega}{1+\sqrt{5}} = \frac{8}{1+\sqrt{5}} \cdot \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{8(1-\sqrt{5})}{1^2-(\sqrt{5})^2} $ $ = \frac{8(1-\sqrt{5})}{-4} = -2(1-\sqrt{5}) = -2+2\sqrt{5} $
Now It's Your Turn	Simplify the following for x. $ \frac{2-\sqrt{3}}{7} = \frac{5}{x} = \frac{(3-\sqrt{3})}{3+\sqrt{3}} \times = \frac{35}{3+\sqrt{3}} = \frac{35(3-\sqrt{3})}{3-\sqrt{3}} = 3$

Summary	1	0
Contract to the contract of th	<i>y</i> .	•

Learning Target: Today you will be able to SOLVE EQUATIONS CONTAINING RADICALS

Question/Main Ideas:	Notes:
Steps to Solving Radical Equations	Isolate the square root
	Square both sides
Example 1: Solving by Isolating the Radical	Solve.
,	a. $\sqrt{x} + 7 = 16$ b. $\sqrt{3x - 4} - 7 = 2$
	$\frac{-7-7}{(\sqrt{x})^2 - (9)^2} = \frac{+7+7}{(\sqrt{3}x-4)^2 - (9)^2} = X = \frac{85}{3}$
о п	$(\sqrt{x})^2 = (9)^3$ $(\sqrt{3x-4})^2 = (9)^2$ $X = \frac{3}{3}$
	X = 81 $3x - 4 = 81$ $3x = 85$
Now It's Your Turn	Solve.
	a. $\sqrt{x} - 5 = -2$ b. $\sqrt{8x + 2} - 11 = -8$ 8 $\times = 7$
	+11+11
	$(\sqrt{x})^{2}(3)^{2}$ $(\sqrt{8x+9})^{2}(3)^{2}$ $x = \frac{7}{8}$
	X = 9
Solving Radical	Put one square root on each side of
Equations with Two Square Roots	the equal sign and then square them.
Example 2: Solving	Solve. Now It's Your Turn: Solve.
with Radical Expressions on Both	a. $(\sqrt{5x-11})^{2} (\sqrt{x+5})^{2}$ b. $(\sqrt{2x-5})^{4} (3\sqrt{7x})^{2}$
Sides	5x-11=x+5 $2x-5=9.7x$
	4x - 11 = 5 $3x - 5 = 63x$
	4 x = 16 - 5 = 61 x
	$X = 4$ $X = -\frac{5}{61}$

An extraneous solution is an apparent solution Definition: Extraneous Solutions that does not satisfy the original equation. CHECK YOUR ANSWERS!!! Example 3: Solve the following. Identifying a. $(n)=(\sqrt{n+12})^2$ -3 = $\sqrt{-3+12}$ b. $\sqrt{3y}+8=2$ Extraneous Solutions $n^2 = n + 12$ $-3 = \sqrt{9}$ $(\sqrt{34})^2 (-6)^2 \sqrt{3(12)} + 8 = 2$ $n^2 - n - 12 = 0$ -3 ± 3 34 = 36 (n-4) (n+3)=0 4= \ 4+12 n=4 -8 No solution Now It's Your Turn Solve the following. $6 - \sqrt{2.8} = 10$ b. $(-y)^2 (\sqrt{y+6})^2$ $-3 = \sqrt{9}$ a. $6 - \sqrt{2x} = 10$ $-\sqrt{2}x = 4$ $6-\sqrt{16}=10$ $y^2 = y+6$ -3 ± 3 $(\sqrt{2}x)^2(-4)^2$ 6-4=10 $y^2-y-6=0$ $a=\sqrt{-2+6}$ (y-3)(y+2)=0 2= 14 X = 8 No Solution c. How can you determine that the equation $\sqrt{x} = -5$ does not have a solution without going through all the steps of solving the equation? A square root can never equal a negative number

Summary:

Learning Target: Today you will be able to GRAPH A SQUARE ROOT FUNCTION USING TRANSFORMATIONS AND FIND THE DOMAIN OF A SQUARE ROOT FUNCTION ALGEBRAICALLY

Questions/Main Ideas:

Notes:

Example 1: Graphing a Square Root with a Table Graph $y = \sqrt{x}$ using the following table.

×	0	1	2	4	9	
У	0	1	1.4	a	3	

Now It's Your Turn

a. Graph $y = \sqrt{x} + 2$ using the following table.

×	0	1	2	4	9
У	a	3	3.4	4	5

shifted up a

b. Graph $y = \sqrt{x+3}$ using the following table.

×	-3	-2	-1	1	6
У	0	1	1.4	a	3

shifted left 3

Concept: Square Root Functions

Parent Function: y= 1x

Example 2: Using Transformations to Graph

Graph each of the following without using a table.

a.
$$y = \sqrt{x-1} + 3$$

b. Your Turn:
$$y = \sqrt{x+2} - 4$$

Review: Domain

The equation $y = \sqrt{x+4} + 2$ is represented in the graph below. Find the domain of the graph. Reminder: The domain is related to the "walls" of a graph.

a. Where is the left "wall"? _____

b. Where is the right "wall"? ____N/A

c. Domain: X \geq -4

d. Evaluate $y = \sqrt{x+4} + 2$ for x = -5.

e. Do you see any connections between the domain and the equation?

f. What happens when you plug in a value for x that is not in the domain (see d)?

Example 3: Find the Domain of a Square **Root Function**

Find the domain algebraically.

the V zero

a.
$$y = 2\sqrt{3x - 9}$$

$$3x-9 \ge 0$$
$$3x \ge 9$$
$$x \ge 3$$

b. Your Turn:
$$y = \sqrt{-2x + 5}$$

Summary: _

Learning Target: Today you will be able to USE TRIGONOMETRIC RATIOS TO FIND THE LENGTH OF A MISSING SIDE OF A RIGHT TRIANGLE

Questions/Main Ideas: No	otes:
--------------------------	-------

Concept: Trigonometric Ratios

Ratios of the side lengths of a right triangle.

soH CAH TOA (see defin below)

15	A
Adjac	ent Hypotenuse
A	
	Opposite A

Name	Written	Definition	
sine of LA	sin A	length of leg opposite LA length of Hypotenuse SOA	
Cosine of	C05 A	length of leg adjacent LA length of hypotenuse	
Tangent of LA	tan A	length of leg opposite ZA length of leg adjacent CA	

Example 1: Finding Trigonometric Ratios

What are sin A, Cos A, and tan A for the triangle shown?

$$\sin A = \frac{\text{opp}}{\text{hyp}} = \frac{15}{17}$$

$$\cos A = \frac{\text{adj}}{\text{Hyp}} = \frac{8}{17}$$

$$\tan A = \frac{\text{opp}}{\text{adj}} = \frac{15}{8}$$

Now It's Your Turn

What are sin E, cos E, and tan E for the triangle below?

$$\sin E = \frac{\text{opp}}{\text{hyp}} = \frac{9}{15} = \frac{3}{5}$$

$$\cos E = \frac{\text{adj}}{\text{hyp}} = \frac{13}{15} = \frac{4}{5}$$

$$\tan E = \frac{\text{opp}}{\text{adj}} = \frac{9}{13} = \frac{3}{4}$$

Example 2: Finding a Trigonometric Ratio	What is the value of cos 55° to the nearest ten-thousandth? Cos 55° = 0.5736 Use Calculator: Degree mode
0 V	a'
Now It's Your Turn	What is the value of each expression in parts (a) - (d)? Round to the nearest tenthousandth.
t to the same of t	a. $\sin 80^\circ = 0.9848$ b. $\tan 45^\circ = 1$
	c. cos 15° = 0. 9659 d. sin 9° = 0.1564
	e. Describe the relationship between sin 45° and cos 45°. Explain why this is true. sin 45 = 0.71 cos 45 = 0.71 same in 45 - 45 - 90 triangle
Example 3: Finding a Missing Side Length	Find the value of x. Round to the nearest tenth. Sin $48 = \frac{x}{14}$ $14 \cdot 0.74 = \frac{x}{14}$
Now It's Your Turn	Find the value of x. Round to the nearest tenth. $ \begin{array}{cccccccccccccccccccccccccccccccccc$

Summary:

Learning Target: Today you will be able to USE TRIGONOMETRIC RATIOS TO FIND THE MISSING ANGLE OF A RIGHT TRIANGLE AND USE TRIGONOMETRIC RATIOS TO SOLVE WORD PROBLEMS

Questions/Main Ideas:	Notes:			
Review: Inverse Operations	Operations that undo each other. Addition => subtraction Multiplication => Division			
Definition: Inverse Trigonometric Ratios	sin, cos, tan find the trig. ratios. If you know the ratios, sin-1, cos-1, tan-1, will find the angles.			
Example 1: Finding an Angle using Inverse Trigonometric Ratios	Find the measure of angle A. a. $\sin A = 0.75$ Sin ⁻¹ (0.75)=A A = 48.6° Your Turn: Find the measure of angle E b. $\cos E = 0.32$ Cos ⁻¹ (0.32) = E E = 71.3°			
Example 2: Finding the Measure of Angles	Find the measure of each angels in the triangle to the right. $ Sin C = \frac{12}{24} $ $ \angle B = 90 - \angle C $ $ \angle B = 90 - 30 $ $ B = 60^{\circ} $			
Now It's Your Turn	In a right triangle, the side opposite angle A is 8 mm long and the hypotenuse is 12 mm long. What is the measure of angle A? What is the measure of the third angle (not the right angle)? A $Sin A = \frac{8}{12}$ $90 - 41.8$			
	12mm 6: -1 (8) -0 [40 20]			

Definition: Angle of Elevation	An angle from the horizontal up to a line of sight	Angle of depression
Definition: Angle of Depression	An angle from the horizontal down to a	Line of sight Angle of elevation ?
	line of sight	
Example 3: Using an Angle of Elevation or Depression	How far are you from the base of the rice $ tan a0 = \frac{150}{x} $ $ 0.36 = \frac{150}{x} $ $ 150 = 0.36x $ $ x = 412.1ft $. You see your friend at the top of the ride. de? 20° 150 ft (Opp)
Now It's Your Turn	After you move forward in line, the angle 50°. How far are you from the base of th	of elevation to the top of the ride becomes
	$tan 50^{\circ} = \frac{150}{x}$ $\frac{1.19 = 150}{1 \times x}$	150=1.19x X=125.8f+

Summary:	1 9 °	and a second	
		P 1	